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ABSTRACT

Machine learning (ML) services have entered various aspects of our daily lives

and industrial production, with most of these services being delivered over net-

works. The escalating demand for ML services has resulted in increased pro-

cessing requirements and a growing volume of data. This poses significant chal-

lenges to traditional solutions, demanding higher-performance computers and

increased network capacity. In-network computing is a promising and scalable

solution, capable of processing packets in-band at the pace of data generation

and facilitating early termination of traffic. However, using in-network comput-

ing for ML inference is a new research avenue. Network devices are designed

for high-performance packet processing and forwarding, and their architecture

is not intended for ML.

This research addresses the design challenges of in-network ML using a

bottom-up approach. It proposes mapping techniques and deployment solutions

that overcome existing limitations and enable the Internet to provide in-network

ML services on programmable network devices, revolutionising the way we use

the Internet for ML. The first part of the thesis focuses on mapping methodolo-

gies, which offer efficient mapping solutions for diverse ML models and hard-

ware devices. Then, to support all aforementioned models and mappings, this

thesis proposes a rapid prototyping framework, accommodating diverse pro-

grammable network devices and use cases. However, while in-network ML can

be deployed, its inference accuracy falls short of that achieved by server-based

solutions. To address this challenge, the third part of the thesis focuses on a hy-

brid deployment framework, utilising a large ML model in the backend to assist

small in-network models. This hybrid deployment allows close to optimal infer-

ence performance while retaining most decisions within the network. The fourth

part of the thesis approaches the same problem from a different perspective,
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proposing a distributed deployment framework. By jointly utilising unused re-

sources among programmable network devices distributed across the network,

this solution further scales in-network ML models and computing functions. The

last part of the thesis demonstrates the application of in-network ML in anomaly

detection, IoT traffic classification, financial market prediction, and load balanc-

ing use cases, showing its potential as a practical service.
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CHAPTER 1

INTRODUCTION

With the exponential growth of data, increased computational capabilities, and

continual refinement of algorithms, machine learning (ML) is experiencing a con-

tinuous enhancement of its capabilities. The services offered by ML have perme-

ated various aspects of daily life and industrial production, playing pivotal roles

in domains such as healthcare [13], financial services [56], and network manage-

ment [31], thereby driving the development of societal digitisation and intelli-

gence [118]. Behind these services are large amounts of servers distributed glob-

ally in cloud or data centres as well as the Internet that concurrently intercon-

nect data, computing units, and users. Today, companies like Amazon, Google,

Microsoft, Alibaba, and others, operate over ten thousand data centres [138],

supporting an ML market of more than 26 billion USD [164]. Interconnected

through the internet, these services provide predictions at rates as high as 1 mil-

lion inferences per second with latency as low as milliseconds [229], constituting

the current infrastructure of server (CPU&GPU)-based ML services.

Traditional server-based ML services are primarily provided in a pattern

where data is transmitted from users to servers through the Internet for pro-

cessing, and then sent back to users. This approach relies on the deployment of

numerous servers or accelerators within centralised data centres, employing par-

allel processing on resource-rich servers to ease the computational requirements

of end-users [82]. While this approach is effective for many applications, espe-

cially those not requiring volumetric data analysis and time-sensitive responses,

it may not be suitable for all scenarios. Certain applications, particularly those

with specific demands on throughput and latency, make server-based ML not

cost-effective [201, 170]. The increasingly widespread application of ML services
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and their large user base drive the demand for higher data rates and lower la-

tency towards data centres. These demands can potentially reach terabits per

second (Tbps) or the entire line rate [17, 96, 15] and are likely to grow further as

digital transformation continues [179]. Even though accelerators such as GPUs

can handle ML requests in parallel, the data still traverses network infrastruc-

ture, passes through PCI express (PCIe), and may involve the CPU on each

server [82]. Processing this significant influx of data and requests presents chal-

lenges for the performance of traditional server-based ML and even potentially

burdens the network [54].

The emergence of programmable network devices offers a promising alter-

native, known as in-network ML [218], to complement existing server-based ML

solutions and address the challenges of high throughput and low latency. In-

network ML deploys ML algorithms on programmable network devices, where

ML services can be processed at the speed of data generation and reach line

rate. With this method, ML requests no longer need to undertake a long jour-

ney to the data centre, they can be processed at the network edge closer to the

data source [72]. However, these devices were initially designed to enhance

network flexibility, manageability, and adaptability rather than providing com-

putation [29]. They have limited resources and programmability, with similar

but heterogeneous architecture according to design characteristics, presenting

difficulties in deploying ML algorithms. While several in-network ML algo-

rithms have been proposed [218, 119, 185], they primarily focus on software

targets, field programmable gate arrays (FPGAs), or smart network interface

cards (SmartNICs), supporting only a limited range of models. These targets

support a restricted data rate [80], exhibiting significant performance gaps when

compared to commodity off-the-shelf programmable switches [201]. Moreover,

limitations in models and corresponding mappings can restrict performance, es-
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pecially when facing highly diverse and complex service demands. In addition,

the absence of deployment tools makes it difficult to be applied in real applica-

tions.

This thesis focuses on the design, implementation, and application of in-

network ML algorithms on programmable network devices. By proposing new

and improving existing algorithm mapping solutions, this research proves the

feasibility of deploying ML algorithms on resource-constrained commodity tar-

gets (Chapter 3). These proposed mappings can be readily integrated using the

newly designed deployment frameworks (Chapter 4). To further scale the ML

performance, this research also introduces deployment techniques and strate-

gies aimed at improving system inference performance (Chapter 5) and model

scalability (Chapter 6) of in-network ML algorithms. Through the application

of these proposed solutions across various scenarios (Chapter 7), this research

establishes that ML algorithms can be seamlessly offloaded onto programmable

network devices while ensuring inference accuracy, model scalability, and over-

all system performance. These collective efforts in this thesis contribute to the

transformation of in-network ML into a practical computing service.

1.1 Scope

The premise of this research is that programmable network devices can be in-

cluded or already exist in the given network. Under this hypothesis, the primary

research questions that I attempt to answer are:

1. How to make in-network ML feasible on programmable network devices?

2. How to simplify the implementation of in-network ML?

3. How to improve the performance of in-network ML systems?
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4. How to scale in-network ML models?

5. Which applications can benefit from in-network ML?

Specifically, a wider range of feasible in-network ML models will provide

more options to users and applications. Fast prototyping tools can trigger use

cases’ interest in adopting in-network ML algorithms. Better system design and

deployment techniques can adapt larger ML models to in-network systems and

thus gain better inference performance. Better accuracy and system performance

will allow in-network ML to be applicable to more services. The sample in-

network ML use cases will guide and motivate future use cases’ realisation. To

summarise, the overall research question is: how to make in-network ML a practical

service?

1.2 Contributions

This thesis answers the previous 5 research questions, proposing solutions and

frameworks to realise in-network ML on programmable network devices. These

designs break through the traditional belief that network devices are not suitable

for ML tasks, enabling the Internet to provide ML inference services with high

throughput and low latency advantages, fundamentally changing the way ML

is used in the Internet. The key contributions of this research are:

1. Developing efficient in-network ML mapping methodologies. This research pro-

poses three effective methodologies for in-network ML mapping. Building

upon these methodologies, this research proposes seven new in-network

ML algorithm mappings, improves four prior mapping proposals, and

supports four additional existing ML algorithm mappings.
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2. Design of a modular in-network ML implementation framework. This research

develops an automated framework, called Planter, for one-click mapping

of in-network ML models for programmable network devices. The pro-

posed modular framework supports a wide range of ML models, target

devices, pipeline architectures, and use cases, enabling rapid prototyping

of in-network ML models.

3. Providing a high-performance in-network ML system. This research proposes

a hybrid deployment solution, running a small model on a switch and

a large model on the backend. With the hybrid deployment, it achieves

high system-level performance (e.g., high throughput and low latency) and

close to optimal ML performance (e.g., accuracy, F1 score), overcoming the

limitation of standalone deployment of in-network ML.

4. Breaking the resource barrier among programmable network devices. This re-

search proposes a distributed in-network computing framework, named

DINC, to overcome resource limitations of programmable network devices.

DINC facilitates the joint control of multiple network devices, which de-

composes larger in-network computing applications, including ML, into

small segments and distributed deploys them on multiple programmable

network devices.

5. Applying in-network ML to different use cases. The proposed solutions are

applied to several widely used applications including anomaly detection,

Internet of things (IoT) traffic classification, financial market prediction,

and load balancing. These use cases demonstrate the practicality of in-

network ML and the effectiveness of the proposed mapping methodologies

and frameworks.
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1.3 Thesis Outline

This thesis begins with a background chapter, followed by four chapters dis-

cussing in-network ML techniques and their implementation, one chapter dis-

cussing use cases, and finally, ending with a conclusion chapter. A brief overview

of the chapters is as follows.

Chapter 2: Background and Related Work. Chapter 2 provides the background

and related work for the thesis. It covers an introduction to programmable net-

work devices, defines the scope of in-network ML, and conducts a literature re-

view of in-network ML.

Chapter 3: In-network Machine Learning Mapping. Chapter 3 is dedicated to

the mapping of ML models to programmable network devices. It presents three

principal methodologies for in-network ML mapping, leading to the develop-

ment of seven new in-network ML inference algorithm mappings, the improve-

ment of four existing mappings, and the implementation details of four other

existing mappings. The evaluation in this chapter analyses the theoretical mem-

ory (table entry) and stage consumption of models realised using these mapping

methodologies. A detailed evaluation is included in the following chapter.

Chapter 4: Automated Deployment Framework. Chapter 4 introduces a frame-

work named Planter for rapid deployment of in-network ML algorithms. Planter

facilitates the selection of ML models, architectures, targets, datasets, and use

cases, and automatically generates, compiles, loads, and runs the mapped ML

models on the selected target. With the help of the Planter framework, this chap-

ter compares all existing in-network ML solutions and demonstrates the benefits

of the proposed approaches in terms of resource utilisation and inference per-

formance. Additionally, the evaluation reports the scalability of proposed and
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existing in-network ML algorithms.

Chapter 5: Hybrid In-network Machine Learning. Chapter 5 introduces a hy-

brid in-network ML deployment. First, the chapter shows the challenges for

achieving close-to-optimum performance on resource-constrained commodity

hardware. Then it shows that by employing a small in-network ML model on

the network device and large ML models over the backend server, an in-network

ML system can achieve close to optimal inference accuracy. Finally, this chapter

reports the accuracy and performance (throughput & latency) of hybrid deploy-

ment using ensemble models (e.g., random forest (RF) and XGBoost (XGB)) in

use cases such as anomaly detection and financial market prediction.

Chapter 6: Distributed In-network Computing. Chapter 6 focuses on dis-

tributed in-network computing (DINC). First, the chapter states the motivation

for distributed deployment and explains routing requirements in a network.

Next, the chapter introduces an integer linear programming model for deploy-

ment optimisation on multi-path networks with resource-constrained network

devices. Then, the chapter details the design of a modular DINC framework

for distributed in-network computing. Finally, the chapter reports the results of

distributed deploying seven in-network computing programs (e.g. five ML algo-

rithms, one caching, and one load balancing) on two practical networks (Folded-

Clos data centre and British Telecom (BT) wide area network (WAN)) with five

different setups. Evaluations show that DINC is an important first step towards

the efficient utilisation of data plane resources through distributed in-network

computing.

Chapter 7: In-network Machine Learning Applications. Using the solutions

presented in Chapters 3 - 6, Chapter 7 shows our exploration of in-network ML

use cases, including anomaly detection, IoT traffic classification, financial market
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prediction, and load balancing. This chapter also discusses the characteristics of

in-network ML use cases, with a particular emphasis on how to optimally apply

in-network ML.

Chapter 8: Conclusion. This final chapter summarises the contributions of this

research, discussing its benefits and limitations, and pointing out future direc-

tions of in-network ML research.

1.4 Publications List

The following publications comprise the core of this thesis, which focuses on the

theory and implementation of in-network ML algorithms. I am the primary con-

tributor to these works, with guidance and support from my supervisor, Noa

Zilberman. Authors marked with “∗” contributed equally to the design, imple-

mentation, evaluation, and manuscript. Other collaborators mainly assisted with

the evaluation and manuscript preparation.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In recent years, the emergence of software-defined networking (SDN) and pro-

grammable network devices has triggered offloading of server-based applica-

tions onto network devices [109]. These offloaded applications leverage the dis-

tinct deployment location and capabilities of processing in-network, which can

enhance service performance while reducing the load on the network. ML is

one of the popular server-based applications and has gained widespread adop-

tion across various fields such as networking, finance, and healthcare, among

others [13, 56, 31]. The continuous emergence of diverse businesses and es-

calating service demands pose challenges to traditional server-based ML sys-

tems [77, 82, 17]. In-network ML, as a prospective solution, involves deploying

ML algorithms closer to the data source within the network, offering low-latency

and high-throughput ML services [218]. In-network ML has a divergence in ser-

vice provision compared to server-based approaches, which serves as a promis-

ing complement to server-based ML systems. However, offloading ML models

for inference on programmed network devices presents challenges [214]. In this

chapter, I provide an overview of programmable network devices (§2.1), discuss

the motivations of in-network ML (§2.2-2.4), provide a review of state-of-the-art

researches (§2.5-2.6), and show the existing gaps (§2.7). These aspects serve as

the foundation and starting point of this research. The content of this chapter

was published in [239, 243].
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2.1 Programmable Network Devices

SDN [134, 57] realises centralised network operation primarily by separating the

data plane and control plane and using a controller to jointly manage a set of

network data planes. This vision started with OpenFlow [136], which employs

a standardised communication interface for data plane reconfigurability. While

OpenFlow facilitates network programmability, its initial focus was on modify-

ing forwarding and routing rules or policies, offering a limited selection of data

plane functionality [256]. The subsequently introduced reconfigurable match-

action table (RMT) model further enhances data plane programmability [30],

empowering users such as network operators to dynamically alter their data

plane’s functionality. Currently, with RMT-based network devices, network ap-

plications can be executed in an “in-network” manner [109]. Specifically, the

program is offloaded from servers, and is implemented and executed within

the data plane. This method allows in-network applications to operate at line

rate, do the data processing in band, and achieve low latency. With the help

of in-network computing, applications can adapt to increasing cloud network

infrastructure demands. As the base of in-network computing, in this section,

I provide an overview of programmable network devices and show their pro-

gramming workflow.

2.1.1 Protocol-Independent Switch Architecture

A programmable device architecture defines the way to make network devices

programmable. Many data plane architectures are similar to and even originate

from protocol independent switch architecture (PISA) [135]. Figure 2.1 shows
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PISA, a basic pipeline architecture for programmable data planes evolving from

the RMT model [30]. PISA allows network users to tailor packet processing logic

within the data plane without hardware modifications, making them indepen-

dent of vendor-provided, fixed sets of protocols. Other architectures also exist,

such as those based on disaggregated RMT (dRMT) [44], which have a similar

concept of a match-action (M/A)-based pipeline with RMT-based architectures.

Given its widespread adoption, this study applies to PISA-related architectures.

Parser                          Match-action pipeline          Deparser 

Figure 2.1: Protocol-Independent Switch Architecture (PISA).

The PISA architecture has three key building blocks: a parser, a deparser,

and a M/A pipeline. When there is an incoming packet, it first goes through

the parser. The parser is a state machine that extracts a sequence of fields from

the packet, called packet header vector (PHV). The PHV contains fields from

both packet headers (e.g., Ethernet, IP, VLAN, TCP/UDP, and other header fields

defined by users) and intrinsic metadata (e.g., ingress and egress ports). After

the extraction, the packet’s payload is stored in a buffer outside the pipeline.

The extracted vector (in PHV) is processed within the pipeline in a sequence of

logical stages by using M/A tables. Each logical stage allows a fixed number of

M/A operations, where a key (an input field from PHV or metadata) undergoes a

lookup in a table, leading to a corresponding action. This enables the processing

of packets in a predetermined way. Finally, the deparser reconstructs PHV fields,

and assembles them with the packet payload, before the packets are emitted.

There are several architectures built on top of PISA, including both open-

source reference architectures and commercial solutions, such as portable
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switch architecture (PSA) [149], portable NIC architecture (PNA) [11], Simple-

SumeSwitch [95], v1model [9], and Tofino native architecture (TNA) [4]. Besides

the PSA and v1model, most other architectures are tailored for specific targets

and incorporate vendor-specific features. All these mentioned targets are sim-

ilar in general, with distinctions primarily focusing on the number and order

of building blocks (Figure 2.1) employed. This study is mainly based on pro-

grammable network devices with the v1model or TNA architecture. The target

devices of these architectures are detailed in the following Section 2.1.3.

2.1.2 Data Plane Programming Language

Programming protocol-independent packet processors (P4) is a domain-specific

language used for network packet processing [29]. P4 provides a flexible and

customisable approach to packet parsing, matching, forwarding behaviours, and

processing methodologies on network devices. A key feature of the P4 language

is protocol independence, enabling the use of the same P4 program on differ-

ent network devices with minimal or no code modifications. Furthermore, the

P4 language supports interaction and control between the programmable data

plane and control plane, which enables coordination between the control logic

and packet processing logic on network devices.

Programmable network devices with PISA-based architecture are pro-

grammed by P4 which does not have a single common compiler or development

environment. Both commercial software development environments (SDE) from

e.g., Intel, NVIDIA, and open-source solutions, e.g., behavioral model version

2 (BMv2), exist. The open source p4c [5] is the reference compiler, developed

by the P4 community, but modified by vendors to their specific product. A P4
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compiler takes a program written in P4 and compiles it into a binary file that is

executable on a specific target, based on a given data plane architecture. Specifi-

cally, P4 targets are programmable network infrastructures, P4 architectures are

the pipeline structures that define how P4 is applied to the hardware, and P4 is

the language that defines the actual packet processing logic. Till now, P4 have

two versions. The P416 is currently the commonly used version of P4, and P414 is

deprecated.

2.1.3 P4 Targets

The P4 language supports a variety of packet processing targets (programmable

network devices), including SmartNICs, data processing units (DPUs), FPGAs,

hardware switch-ASICs, and software switches [81]. P4-based programmable

hardware switches are available from multiple equipment vendors, such as Intel

Tofino, NVIDIA Spectrum, and Cisco Silicon-One. DPU and SmartNICs vendors

include NVIDIA BlueField [3], Intel IPU [1], AMD Pensando [7], Netronome

NFP [2] and others. These vendors typically support a family of P4 pro-

grammable devices, across multiple generations. In addition to hardware tar-

gets, there are multiple open-source implementations of P4-programmable soft-

ware switch targets. BMv2 [8] is the most popular one and the reference P4

software switch. It supports multiple targets, including Simple Switch based on

the v1model architecture and PSA switch based on PSA [150]. In the following,

I discuss some commonly used P4 platforms of different types.

Switch-ASIC. Switch-ASICs are specialised devices designed specifically for

packet forwarding in network switches, utilising an application-specific inte-

grated circuit (ASIC) to achieve high-speed and low-latency switching. Pro-
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grammable switch-ASICs introduce programmability into the switch pipeline

without compromising on performance. They are characterised by high through-

put and low latency. Current switch-ASICs exceed 50Tbps and can process tens

of billions of packets per second [139], with sub-microsecond latency. Using In-

tel’s Tofino switch-ASIC [4] as an example, there are multiple pipes (each com-

posed of an ingress and an egress pipeline), with multiple ports associated with

each pipe. To provide guaranteed throughput and latency performances, en-

sure independence, and avoid conflicts and concurrent access issues, state is not

shared between pipes. For instance, register values in one pipe (either ingress

or egress pipeline) cannot be read by programs running in other pipes. Incom-

ing packets are processed in an ingress pipeline, before entering the traffic man-

ager and being processed in an egress pipeline. The egress pipeline is selected

based on the packet’s output port. Each pipeline contains a limited number of

stages, which can execute operations such as 1) using M/A to lookup keys in

tables and take corresponding actions, 2) utilising counters, meters, or regis-

ters, and 3) computing values using arithmetic logic units (ALUs). Each stage

has limited hardware resources, which is the biggest challenge for offloading

novel network functions into programmable targets as described in most exist-

ing works [245, 23, 210, 252].

FPGA. FPGAs are configurable integrated circuits that can be programmed to

perform specific functions, providing flexibility and reconfigurability for imple-

menting custom hardware designs. FPGAs were early demonstration targets

for P4-based network devices, with works such as P4FPGA [206]. Other exam-

ple targets include NetFPGA [254] running P4→NetFPGA [95] and AMD Alveo

running OpenNIC [32]. Both are based on existing FPGA boards and provide

a framework able to compile P4 programs into a dedicated packet-processing

module. FPGA-based programmable network devices reach data rates of hun-
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dreds of Gbps, lower than high-end switch-ASIC but higher than CPU-based

targets. Different from previous targets, FPGAs allow users to design their own

P4 architecture. For example, P4→NetFPGA [95] uses the SimpleSumeSwitch ar-

chitecture, which uses only a single pipeline, without separation to Ingress and

Egress.

Software Switch. Software switches realise programmable network pipeline vir-

tually on standard CPUs, rather than on specialised hardware. To overcome per-

formance barriers of CPUs, kernel bypass techniques are often employed. For

instance, T4P4S compiles a P4 program (with v1model architecture) and loads

the compiled program to DPDK accelerated data planes [205]. Similarly, com-

piled P4 programs using PSA architecture can run on software targets such as

PSA-eBPF, P4 DPDK, and Open vSwitch (OVS) [156]. As a model used to ex-

plore P4 functionality, the P4 behavioral model (BMv2) is widely used. It sup-

ports both v1model and PSA architectures. Another hybrid target is P4Pi [115],

which enables P4 execution on a Raspberry Pi. P4Pi supports T4P4S and BMv2,

and offers an affordable hardware target suitable for educational and research

purposes. Although software switches typically exhibit lower performance com-

pared to hardware targets, their widespread availability makes them a common

choice for design verification.

2.1.4 Control Plane

Control plane manages the runtime behaviour of P4 targets via an application

programming interface (API). The API is supported by a device driver or an

equivalent software component. P4Runtime [6] is a common control plane spec-

ification that allows to control or configure the P4 program running on the data
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plane of programmable network devices. Figure 2.2 illustrates the main control

Control Plane:
SDN

Controller

Network
Device

Table Entries Externs
Computing + Standard Switch Program

Control Plane: Device CPU

Data Plane

P4 Program Compiled ProgramCompiler

CPU Port
Load

Add/Remove Control

Runtime 
Control

Figure 2.2: Control plane and data plane interaction.

plane operations. It facilitates runtime control of P4 entities (e.g., M/A tables,

counters, meters), for example by adding and removing table entries. There is

typically also a packet I/O mechanism for streaming packets to/from the control

plane. Reconfiguration mechanisms allow the loading of P4 programs onto the

target’s data plane. The runtime operations can be realised on the device level

control plane (e.g., switch CPU). The control plane of all programmable network

devices can be further linked to a centralised controller (e.g., SDN controller) for

joint management.

2.2 In-Network Computing

In-network computing refers to the offloading of programs or computation tasks

to network devices, for example, programmable switches or SmartNICs. In-

network computing takes advantage of network devices’ high processing speeds

and low overheads in physical space, energy, and cost, as they are already part

of network infrastructure [201]. Realisation of in-network computing allows net-

works to become part of available computing resources. It provides better in-
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tegration of communication and computing resources when diverse application

requirements need to be addressed [202]. Microsoft Azure highlighted the po-

tential of in-network computing for telecommunication workloads [18], as it can

efficiently process massive volumes of traffic directly within the network infras-

tructure. Their analysis identified cost efficiency, scalability and increased func-

tionality compared with existing solutions. In response to what Microsoft identi-

fied as the main challenge for in-network computing, resource constraints, they

have developed a resource elasticity solution [111].

In-network computing is implemented on any of the targets described in

the previous section. It can be applied in various areas (e.g., caching, measure-

ments, network services, and distributed systems). For example, NetCache [103]

uses Switch ASIC to detect, index, cache, and serve hot key-value items in the

data plane, providing significant throughput increase and latency reduction.

P4xos [51] offloads a consensus protocol (Paxos) on programmable network de-

vices (e.g., Switch ASIC, FPGA, and DPDK) and can effectively remove consen-

sus as a bottleneck for distributed applications in data centres. NetChain [102]

uses switch-ASIC to store data and process queries in-band (within the data

plane), which provides scale-free sub-RTT coordination in data centres. These

in-network computing applications are mainly implemented on a standalone

device, yet they can further co-deploy services with CPU [169] or other pro-

grammable network devices [193].

2.3 Scope of In-network Machine Learning

The combination of machine learning and networking can be classified into three

forms: general ML, network-assisted ML, and in-network ML. These forms can be
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primarily distinguished based on the location of the ML inference decision, as

depicted in Figure 2.3. The detailed definition of each form is listed as follows:

• General ML refers to the case where both the ML model training and

decision-making are on the server side, including deployments on hard-

ware accelerators such as GPU.

• Network-assisted ML uses network devices primarily for model training ac-

celeration (faster parameter updates) and better feature collection & pre-

processing (more detailed features collected inside the network), while the

inference takes place on the end host.

• In-network ML refers to complete ML processes, either training or inference,

done entirely in the network. Commonly today this refers to In-network ML

inference, where trained ML models are running on programmable network

devices, and inference decisions are taken within the network device.

Network-assisted 
machine learning

End-hostIn-network
Data plane Control plane

General machine 
learning

In-network 
machine learning

Figure 2.3: The difference between general ML, network-assisted ML and in-
network ML (The arrow indicates where the ML inference decision is made).

This thesis explores the field of in-network ML. Network-assisted ML tech-

niques such as in-network aggregation [171, 116] and feature extraction [128, 19,

21, 122] are outside this scope.

In-network ML is suitable for a range of applications. For example, it can

be used for cyber security applications, where in-network ML classifies traffic in

real time and detects network attacks. In this high-throughput application ex-

ample, in-network ML can classify the traffic at line rate and drop any malicious
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packets. A second example is using in-network ML for latency-sensitive appli-

cations, such as stock price movement prediction. In this example, the switch

can forecast whether the price will rise or fall and recommend a buy, sell, or hold

operation directly within the network to reduce latency, improving overall prof-

itability. Note that the outcomes of this research are not confined to these two

examples and have broad applicability.

2.4 Motivation: the 3-Ls

The benefits of running in-network ML using programmable network devices

can be summarised as the 3-Ls: Location, Latency, and Load.

M1: Location. Any cloud-processed user-generated data goes through the net-

work first. This means that any information that needs to be classified, is already

processed by switches. Extending this processing to include classification is a

natural step. Network switches are located at every point of the network (e.g.,

edge, data centre, point of presence), providing early access to data as well as

visibility into the aggregation of data sources. In addition, network switches are

already part of the infrastructure carrying user data and do not need to be newly

added. There are no cost or space overheads, beyond existing network require-

ments, unlike other accelerators (e.g., GPUs, middleboxes).

M2: Latency. The latency from a data-generating node to a processing node is

always higher than the latency to any network devices along the path between

these nodes. Within a data centre, every hop avoided through in-network ML

saves hundreds of nanoseconds to microseconds [255]. In WAN, propagation

delay can be in the order of milliseconds, therefore, classifying next to the end-

user or at the edge can significantly reduce latency. This is important for time-
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sensitive applications, such as financial transactions, industrial control [114],

smart transportation systems, and latency-critical IoT applications [173]. As dis-

cussed later, automatically converting and loading trained ML models to (local

and remote) network switches, can speed up further the reaction to events in the

network and shorten the time for detection and mitigation.

M3: Load. Network switches can process billions of transactions per second and

do so while providing high power efficiency [201]. The rate of classification deci-

sions by an end-host or an accelerator is bounded by the data rate of the attached

network device. A fully realised in-network ML offers both the high throughput

of a network switch and the reduction of the load on the backend. In-network

ML can significantly reduce the amount of traffic to servers, and that requires

further processing. In some use cases, such as mitigating distributed denial of

service (DDoS), dropping malicious traffic close to the source can dramatically

reduce both network and server loads.

2.5 State-of-the-Art of In-network Machine Learning

Since 2017, researchers have been exploring implementing the inference process

of ML algorithms directly within programmable network devices. Work prior to

this research can be primarily categorised into three types: 1) tree-based models,

2) neural networks (NNs), and 3) other traditional ML models. All in-network

ML works to date are listed in Table 2.1, roughly by type and based on their

development timeline. There are two noteworthy points to highlight in this table:

1) The volume of publications in this domain has consistently grown since 2018;

2) Existing works predominantly support only a single ML model (> 75%) as

opposed to multiple models. To better understand the background of in-network
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No Scheme Algorithm Platform
1 IIsy (Short) [218] DT, KM, SVM, and NB NetFPGA-SUME and BMv2
2 pForest [33] RF Tofino
3 SwitchTree [119] RF BMv2
4 BACKORDERS [46] RF BMv2
5 N2Net [183] BNN RMT-like Switch Pipeline
6 BaNaNa Split [169] BNN SmartNIC
7 toNIC [186] BNN Netronome SmartNIC
8 Qiaofeng et al. [160] BNN (Federated learning) Netronome SmartNIC

and BMv2
9 N3IC [185, 184] BNN Netronome SmartNIC,

NetFPGA, and BMv2
10 Taurus [196, 195] M-RA2: DNN, SVM, KM, Modified ASIC

and LSTM
Works after The Initial Work of This Study

11 Clustreams [66] k-NN Clustering Spectrum-3 switch
12 Mousika [215] DT Tofino
13 pHeavy [232] DT BMv2 and Tofino
14 INC [64] DT Tofino
15 Bruno et al. [213] RF Netronome SmartNIC

and BMv2
16 MAP4 [214] DT, RF Netronome
17 NetPixel [177, 178] DT, CNN BMv2
18 IOI [248] NN Modified ASIC
19 Paolucci et al. [152] NN BMv2
20 Homunculus [197] DT, KM, SVM, and NN Modified ASIC
21 OPaL [180, 181] Temporal-difference RL Netronome SmartNIC

algorithms (SARSA)
Works Resulting from This Study

22 Planter [247, 245, 246] SVM, NB, KM, DT, RF, XGB, Tofino, Tofino2, BMv2,
IF, KNN, PCA, AE, and BNN T4P4S, P4Pi, and FPGA

23 IIsy [243, 244] DT, RF, XGB, KM, NetFPGA-SUME, Tofino,
SVM, and NB and BMv2

24 DINC [242] Distributed NB, SVM, DT, RF, BMv2 and Tofino
and XGB

25 QCMP [241] Q-Learning Tofino and BMv2
26 Linnet [90] NB, DT, RF, XGB BMv2
27 LOBIN [91] KM, KNN, DT, RF, XGB BMv2, Tofino, and Tofino2
28 P4Pir [228, 226] DT, RF P4Pi
29 FLIP4 [227] Federated XGB P4Pi

Table 2.1: Summary of in-network ML Algorithms until early 2023. All the used
acronyms are listed in Abbreviations.
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ML, this section previews an overview of previous works, outlines the process

of their evolution, and discusses their inherent limitations. A more thorough

explanation of all in-network ML works can be found in our survey paper [239].

2.5.1 Tree Based Ensemble Models

The deployment of decision tree (DT) and tree-based ensemble models on

programmable network devices was introduced by IIsy [218] and pForest in

2019 [33], and is followed by many other works such as Planter, SwitchTree, and

BACKORDERS [247, 119, 46].

Within these efforts, the implementation of the base tree model can be cat-

egorised into two technical routes, as shown in Figure 2.4. The first route is

using a table per depth. This route is led by pForest [33] which hierarchically

realises decision tree and random forest, employing a M/A stage for each depth

(level) in the tree. All branches of the tree at the same depth are stored in a com-

mon M/A table. pForest validated this mapping approach on both BMv2 and

Tofino platforms using a flow classification use case. Subsequent works, such as

SwitchTree [119] and BACKORDERS [46], adopted this solution for the model

on anomaly detection use cases. Evaluation results show that this method has

low memory consumption but requires a substantial number of pipeline stages,

which constrains the model size when deployed on commodity hardware. The

second route is using a table per feature. IIsy [218] lead this second route, which

implemented decision tree through feature mapping. This approach applies an

M/A table per feature to transform input features into codes. Subsequently, a

decision table is utilised to map these codes to the output class. The IIsy-based

solution, while less intuitive than pForest, offered significant reductions in stage
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Figure 2.4: Two technical routes of implementing tree models: (a) using a table
per depth [33] and (b) using a table per feature [218].

consumption. However, IIsy only provided an FPGA-based solution for decision

tree, without extending decision tree to ensemble tree models. Moreover, the

memory-intensive nature of the decision table and feature tables used for map-

ping may potentially result in table size explosions, especially when applied to

switch ASIC.

2.5.2 BNN Based Models

The implementation of neural networks in programmable network devices in-

volves the utilisation of binary neural networks (BNNs) to transform the neu-

ral network into a format compatible with pipeline operations. N2Net was the

first work to provide a solution to map the forward path of the BNN to RMT

switches [183]. However, due to model complexity, this model is challenging to

deploy on commodity hardware.

Two approaches appear to mitigate this challenge. The first approach uses

targets that support more stages. The software switch such as BMv2 has no stage

limit and is suitable for BNN implementation. Several existing works such as
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Qiaofeng et al. [160], toNIC [186], and N3IC [185] apply BMv2 in their function-

ality evaluations. However, this method is at the expense of system performance

such as throughput and latency. The second approach uses specialised hard-

ware that allows complex operations to reduce stage consumption. Specialised

hardware components, such as micro-engines (MEs) in SmartNICs [185, 169] or

customised MapReduce (MR) blocks using FPGA, are used to conduct complex

operations in neural network [195]. In this work, I mainly focus on using com-

modity off-the-shelf devices. The design and application of specialised hardware

or externs for neural network is not our focus.

2.5.3 Other ML Models

Traditional ML algorithms, including support vector machine (SVM), naı̈ve

Bayes (NB), and k-Means (KM) were initially proposed by IIsy [218]. To avoid

complex operations in the algorithm, after model training, intermediate results

for each potential input are stored in M/A tables. IIsy made trade-offs between

accuracy and feasibility, so as to realise the implementation of traditional ML

models with complex operations on programmable network devices. In IIsy,

more accurate algorithm implementation and less computation in network de-

vices mean more memory consumption needed on network devices and more

complex calculations in the table generation stage. The evaluation on BMv2 and

NetFPGA verified the functionality of the generated models. Regarding resource

utilisation, this approach requires a greater number of pipeline stages compared

to the maximum number of tables utilised for storing intermediate results, due to

interdependency (when intermediate results from all tables are employed in each

formula). The memory consumption depends on the needed number of inputs

for each intermediate result calculation and the value range per input feature.
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For IIsy-based solutions, the consumption of stages cannot be ignored, particu-

larly when it coexists with other network functions. Moreover, the possibility of

table size explosion when reducing stages hinders its applicability in use cases.

2.6 Deployment Scenarios

In-network ML can be used in different deployments, such as data centre net-

works [33], WAN [119], and edge computing [169]. Many of the works focus on

the technology, it can be expected that DDoS mitigation will be deployed in WAN

(dropping traffic close to the source), while latency sensitive use cases will be de-

ployed at the data centre or the edge (where computation time dominates over

propagation time). I divide these works into three types of deployment [243] (to

be clear that this is already our work): native switch, endpoint accelerator, and

SmartNIC.

Switch/Router. A native switch is the most common type of deployment, where

a network switch is running in-network ML in parallel with its traditional net-

working functionality, such as packet forwarding and traffic management. This

type of deployment is beneficial as the switch is already deployed, thus there

is no additional cost or space requirement, and inference can happen as traffic

passes through the network. The disadvantage of such deployments is that the

co-location with networking functionality leaves fewer resources for in-network

ML.

Endpoint Accelerator. A programmable network device can also act as a “pure”

endpoint accelerator, where a dedicated network platform is used for the sole

purpose of in-network ML. This concept is similar to traditional accelerators,
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such as GPUs, except that the network platform is network-attached rather than

residing on a host bus. While this deployment allows all the device’s resources

to be used for in-network ML, it adds cost, power, and space overheads. An

endpoint device also adds an extra hop to the traffic compared with a native

switch.

SmartNICs. The deployment of in-network ML on SmartNICs, which includes

also DPUs, makes it possible to provide in-network ML on incoming traffic to an

end-host. This deployment scenario is not very different from a native switch,

as the ML model is co-located with native NIC functionality, yet a SmartNIC

typically has more memory resources than a switch-ASIC. Another difference is

that a SmartNIC has an order of magnitude lower throughput than a switch.

2.7 The Gap in In-network Machine Learning

Researchers have attempted to effectively port ML models to programmable net-

work devices. However, these attempts were preliminary and limited in practical

application. The gap in existing solutions can be summarised into the following

five points:

Resource Restricted Hardware. Many previous approaches mainly prototyped

their mappings on software targets, which require significant changes or reduced

model sizes when deployed on hardware targets [33, 243, 119]. The design of

hardware programmable network devices, especially off-the-shelf switches, pri-

marily focuses on high-speed processing and switching of packets, resulting in

constrained general computing capabilities compared to software targets, FP-

GAs, and SmartNICs. For instance, the current mainstream switch-ASICs, have
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1) limited data types, where floating-point numbers are not directly supported;

2) limited arithmetic operations, where multiplication and division are not al-

lowed; 3) limited stages, where loop operations are not allowed; and 4) limited

memory, in the order of tens of megabytes. The combination of these limitations

poses challenges to the algorithm mapping of in-network ML.

Lack of Algorithm Mapping. Current in-network ML implementations are rel-

atively simple and limited in scope. Specifically, some common problems in-

clude 1) limited supported models [160, 183], 2) restricted mapping options for

each model [119], 3) table size explosion (such as applying a single M/A table

to directly map input features to labels) [218], and 4) pipeline stage explosion

(typically including algorithms implemented with a similar logic as it is in the

server) [33]. These problems will be further magnified when running in-network

ML on commercial switches, leading to problems such as restricted model and

mapping selection, limited model size with poor scalability, and suboptimal per-

formance. The combination of these challenges highlights the need for devel-

oping general and efficient algorithm mapping solutions. Simultaneously, to

achieve good scalability and performance under constrained resources, realis-

ing the optimised algorithm mapping for in-network ML to balance and even

reduce memory and stage consumption is essential.

Inefficient Model Implementation. The deployment of in-network ML algo-

rithms is still a challenge to existing works. There is a lack of exploration in 1) the

rapid deployment of individual models, 2) the seamless transitioning of models

across different architectures and target devices, and 3) the swift integration of

algorithms with use cases. Existing works mainly employ manually written data

plane code [218, 119]. The absence of deployment frameworks significantly com-

plicates ML deployment and impedes comparisons among various models and
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mapping solutions. Moreover, without such a framework, it is hard to realise the

swift comparison of in-network ML algorithms across diverse hardware deploy-

ments for various use cases. These gaps make the adoption of in-network ML

notably complex in real applications.

Constrained System Performance. Existing In-network ML solutions fall short

of achieving performance comparable to ML on dedicated servers with large

model sizes [33, 46]. Despite continuous improvements in the deployment tech-

niques that may help narrow this performance gap, the inherent resource con-

straints of each individual in-network device ultimately limit the scalability and

performance of in-network ML. It is challenging to build an in-network ML sys-

tem that meets the stringent demands for the classification performance of cur-

rent applications. This is as the in-network ML system needs to achieve compa-

rable classification performance to server-based large models while maintaining

the advantage of high throughput and low latency.

Limited Use Cases. While in-network ML can provide ML services with high

throughput and low latency within the network along the data path, it re-

mains an emerging field and has only been applied to a limited range of use

cases [119, 33, 46, 218]. The current research primarily focuses on algorithmic

and networking implementations. To make in-network ML an effective ML ser-

vice, it is critical to propose and validate more robust use cases that demonstrate

its effectiveness. Migration of use cases from traditional ML to in-network ML

is not an easy task. On one hand, the use case should be carefully chosen to

match the location and performance of in-network ML. On the other hand, use

cases may need to be implemented inside the network on different architectures

and programming languages. Identifying applicable use cases and implement-

ing them on programmable network devices is challenging.
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Beyond general limitations, there are also specific limitations to the imple-

mentation of specific ML models:

• Decision tree and tree-based ensemble models: Although tree-based

models were considered the most mature ones in terms of data plane imple-

mentation compared to other models, existing solutions have limitations.

The using a table per depth approach [33, 119] exhibits poor scalability on

hardware targets and sensitivity to the number of input features. However,

this approach is not sensitive to the number of branches and leaf nodes.

In most cases, the deployed decision tree with this approach consumes a

small amount of memory, but a large number of stages. The using a table

per feature approach [247, 243] can accommodate a large number of features,

with generally lower stage consumption. However, this method only sup-

ported decision tree. Additionally, in scenarios where tree depth is large,

the number of branches and leaf nodes increases and can consume signifi-

cant memory.

• BNN based models: While previous works presented solutions imple-

menting the forward path of BNN and proved the feasibility of mapping,

it was not shown that these solutions fit on current commercial switch-

ASIC with acceptable performance and scalability [185, 186]. Also, early

works [183] did not mention the performance matrix of their solutions com-

pared to other end-host deployed ML benchmarks.

• Other ML models: Some works [218, 196] have proposed preliminary gen-

eral solutions and ideas for ML deployment, but only 5 ML algorithms

have been demonstrated. Moreover, the existing mappings were on FPGA

rather than switch-ASIC. The mapping of more ML algorithms remains

unexplored, and performance testing is not perfect yet. In addition, the
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general relationship between the size of the ML model, total resource con-

sumption, and implementation accuracy is not well defined.

2.8 Summary

In this chapter, I introduced the background relevant to this thesis, in partic-

ular, the existing programmable network devices and the state-of-the-art in-

network ML research. Programmable network devices are often based on PISA-

based architectures and can be programmed using the P4 language (§2.1). The

appearance of these devices created opportunities for in-network computing

(§2.2). This computing approach can benefit from the distinctive deployment

location and inherent high throughput and low latency characteristics of net-

work devices, offering an alternative solution complementary to the existing

server-based computing models. ML workloads, as increasingly popular com-

putational tasks, prompted the expected deployment of ML algorithms within

networks, forming in-network ML (§2.3). Similar to in-network computing, in-

network ML has the benefit of 3-Ls, which are location, load, and latency (§2.4).

While several ML algorithms are already mapped to programmable network

devices (§2.5-2.6), many limitations remain in terms of supported model types,

model adaptability, model scalability, deployment techniques, and deployment

strategy (§2.7). The practical and massive adoption of in-network ML is re-

stricted due to these gaps. In the following chapters, I introduce solutions and

frameworks to bridge gaps and realise practical and effective in-network ML

services.
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CHAPTER 3

IN-NETWORK MACHINE LEARNING MAPPING

The preceding chapter discussed the works of previous research that imple-

ments in-network ML algorithms. Owing to the complexity of ML inference

algorithms, the existing mappings mainly cover a small number of (relatively

simple) models [33, 46]. Moreover, existing efforts have predominantly opted

for programmable network devices with relaxed resource constraints, high pro-

grammability, and lower throughput, rather than achieving better performance

on resource-constrained commodity hardware devices [119, 218]. To enable a

broader application of in-network ML across various services, there is a need for

more available ML models, diverse algorithm mapping approaches, and univer-

sal support on different target devices. In this chapter, I build upon the early

concepts in [218] and propose three mapping methodologies for in-network ML

algorithms (§3.2). Each methodology can be applied to a group of ML algorithms

with specific characteristics. Building upon these methodologies, I support and

realise the mapping of a wide range of ML algorithms (§3.3-3.5), with multiple

mappings realised for some of the models. Most of these mappings are designed

to support multiple software and hardware programmable network devices, par-

ticularly resource-constrained commodity targets. The mapping methodologies

introduced in this chapter enrich the available models, alleviating the scarcity of

in-network ML algorithms, which were published in [245, 247, 243, 241, 239].

3.1 Objective

This research aims to narrow the gap of in-network ML mapping and sets the

following design goals:
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1. General mapping methodology. Fundamental characteristics of ML inference

algorithms should be identified and their data plane mapping should be simpli-

fied. This can be used as a guidance for in-network ML realisation and drive the

implementation of new models and their variations.

2. Optimised models. ML inference models mapped to programmable data planes

should provide high ML and system performance, with minimum resource over-

heads. As programmable network devices are primarily designed for packet

processing, they have limited resources, and support a constrained set of math-

ematical operations. Mapped ML algorithms need to trade off model size and

performance to fit on a network device. Thus, this work should support a wide

range of predefined mapped ML models, with optimised resource efficiency, that

can co-exist with mandatory network functionality.

3. Theoretical analysis. ML models mapped by the same mapping methodology

have similar characteristics in stage and memory (M/A table entry) consump-

tion. A theoretical analysis can help us better understand each proposed map-

ping and the benefits of its selection and adoption. Due to the dependency on

implementation, practical evaluations are discussed in the following Chapter 4.

3.2 Generalising Mapping Methodologies

Mapping ML inference models to the data plane can be challenging, therefore

many previous works [119, 33, 66, 160, 186, 184] have focused on a single model.

While a single-model approach has benefits, it also limits the agility and adapt-

ability to use cases, creating a barrier to adoption of new algorithmic solutions.

This research tackles this challenge by proposing three general ML model map-
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ping methods, based on similarities in models’ structures.

A model’s mapping needs to attend to the constraints of programmable net-

work devices, such as pipeline architectures, resources (e.g., stages and mem-

ory), and limited mathematical operations. To enable the mapping of multi-

ple different models under these constraints, I propose three general mapping

methodologies: direct-mapping (DM), encode-based (EB), and lookup-based

(LB). Some models have a clear sequential and simple inference process, where

a direct-mapping solution can be used (§3.3). However, for algorithms that have

relatively complex inference processes, direct-mapping solutions may result in

high resource consumption and can not be applied. At this time, if the algorithm

inference process can be treated as the splitting of the feature space, encode-

based solutions can be applied (§3.4). Similarly, if the inference model has a

form of polynomials, we can utilise a lookup-based solution to support them

(§3.5). The following section describes the three mapping methodologies with

leading examples per method in detail.

3.3 Direct-Mapping Methodology

Researchers have identified early on, that some ML algorithms have a structure

relatively similar to a data plane [218], simplifying their mapping. Their infer-

ence process can be converted to a sequence of match actions using the direct-

mapping approach. However, to realise them on programmable network de-

vices, some adaptations are still required, including the utilisation of alternative

operations or approximations to replace complex operations that lack support.
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3.3.1 Decision Tree (DT)

Decision tree is one of the classical supervised learning algorithms, which can

solve both classification and regression problems [141]. A decision tree model

has a tree-like structure that includes a root node, several internal nodes, and

several leaf nodes [166]. The leaf node corresponds to the decision result, and the

internal node (which can be named as branch) corresponds to the decision rule.

When entering the decision tree, data starts from the root node, goes through the

internal nodes, and heads for the corresponding branch according to the decision

rules. Classification is completed when the data reaches the leaves. The calcula-

tion logic of a simple switch pipeline is similar to a tree structure, which makes

decision tree a good application prospect [218]. However, the iterative node-

based comparisons performed by decision tree during inference pose a primary

challenge in realising the algorithm on programmable network devices [218].

Direct-mapping decision tree (DTDM) [119, 33, 213], as shown in Figure 2.4

(a) (or Tree 2 in Figure 3.1), hierarchically maps the tree model into the M/A

pipeline, using Ndepth tables. The model is executed within the pipeline layer by

layer (depth by depth), until reaching the leaf node. The model starts by extract-

ing the required features from incoming data. In each layer of the tree, the model

compares a feature’s value and a threshold. The next layer uses the node ID and

the comparison result to extract the node information for the current layer. This

approach consumes little memory, as the number of nodes in the tree is lim-

ited, but requires a lot more stages as there is a dependency between the tree’s

depth and the number of stages. Another simple version of the depth-based ap-

proach uses i f and else statements instead of M/A tables, which is intuitive but

requires more lines of code [213] and does not save stages. Both these two meth-

ods mainly fit targets that are not sensitive to stages.
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Figure 3.1: Ensemble trees workflow using direct-mapping methodology.

3.3.2 Random Forest (RF)

Random forest is an ensemble model built from a set of decision tree models [85].

The direct-mapping random forest (RFDM) uses a similar mapping process as de-

cision tree [33, 119], with an extra decision table used to conclude the labelling

based on all results from each base tree model. As shown in Figure 3.1, to map

a p-depth (layer) model, a single DTDM uses p tables. Each table uses the result

from the previous layer as the key. The workflow checks the current branch ID,

its threshold, and the used feature. After the lookup, a comparison is done be-

tween the matched value and a threshold. The comparison’s result and the cur-

rent branch ID are used as the keys in deeper layers. Direct-mapping ensemble
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trees consume relatively low memory, but the logic operations are complex and

lookups need to be executed sequentially due to the strong dependency between

parent and child nodes, which is stage-consuming and latency-consuming. This

research optimises the implementation in [119] by enabling parallel tree place-

ment, allowing each pipeline stage to concurrently process branches at a certain

depth across all trees.

3.3.3 Neural Network (NN)

Neural network stacks simple classifiers that operate in parallel to model the

complex relationship between input and output from historical data. These sim-

ple classifiers, such as perceptrons, are shown in Figure 3.2. Due to its layer-

based structure, this research supports the direct-mapped binary neural net-

work, as proposed in [162, 184]. With binary inputs and weights, the three key

steps in the forwarding path of a perceptron in a neuron network are shown in

Figure 3.2, which will be replaced by Step 1 (XNOR operation), Step 2 (Ham-

ming weight), and Step 3 (comparison), as well as meet the constraints of pro-

grammable network devices [183, 169, 186, 185, 160]. M/A is another alterna-

tive to realise these three steps in perception with the trade-off between memory

(M/A) and stages (Popcount & XNOR) but usually requires a large amount of

memory and many stages. Since in current programmable network devices, the

M/A-based method does not bring benefits in terms of saving stages and mem-

ory, this subsection focuses on the Popcount (Hamming weight) and XNOR-

based method.

BNN is a stack of binarised perceptions, its workflow within the data plane is

shown in Figure 3.3. This example requires three input features, employs three
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Figure 3.2: A fully connected neural network constructed by many perceptrons.

neurons in the middle layer, and has one neuron in the output layer. The work-

flow starts by extracting selected features from headers of incoming packets or

local memory, such as meters, counters, and registers. Then, it concatenates the

features to bit strings as inputs. The weight of each neuron in the n layer is saved

in a register as a bit string, and is read by the workflow. The device then exe-

cutes an XNOR operation (⊕ in Figure 3.3) between the weight and the input bit

string. The number of bits equal to one in each result will be counted by adapt-

ing the Hamming weight algorithm, and the model verifies if the number of bits

equal to one is bigger or equal to half the length of the weights’ bit string, as the

sign operation. The verified result, a single bit, is stored in the least significant

bit of the next layer’s input bit string. The workflow iterates previous steps for

each layer until the last layer. There is a notation change as shown in Figure 3.3.

Different from Figure 3.2, the weights in each layer are equal to the number of

neurons in the next layer. A simple example of a basic element of the workflow

is shown in the bottom right corner of Figure 3.3.

The applied model and backpropagation method should ensure that the net-

work weights are close to the range [-1, 1], which helps reduce the loss of in-

formation when applying the binarisation technique. Benefiting from register-

stored weights, binary neural networks can apply the online update without
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grammable network device.

stopping the device [160]. The trained binary weights will be packed and trans-

ferred to target data plane devices and trigger the weight update workflow.
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3.3.4 Q-Learning

Q-learning [209] is a popular reinforcement learning algorithm. Unlike other

reinforcement learning algorithms that are deep neural-network and hard to im-

plement in a data plane [245], Q-Learning is suitable for direct-mapping method-

ology. As shown in Algorithm 1, the algorithm tries to solve the Markov deci-

sion process by learning an optimal policy (Q-table) through value iteration. It

achieves this by iteratively updating the Q-value of state-action pairs (s-a and

s′-a′ are the current and next state-action pairs). To this end, it uses observed re-

wards (r) and the maximum expected future rewards (Algorithm 1 line 6, where

α is the learning rate and γ is a discount factor). The algorithm explores the en-

vironment using an ϵ-greedy algorithm to balance exploration and exploitation,

gradually converging towards an optimal policy that maximises the expected

cumulative reward over time. During the exploration process, each time Q-table

update means a step and each time environment restart means an episode. The

look-up mechanism used by Q-learning’s Q-table fits the M/A table in the data

plane well, and the limited action space inside the Q-table reduces memory re-

quirements.

Algorithm 1: Q-learning
Initialize: The Q-table Q(s,a) arbitrarily

1 Repeat // for each episode
2 Initialize s;
3 Repeat // for each step of episode
4 a← Q(,) and s using policy e.g., ϵ-greedy;
5 Take action a→ observe r and s’;
6 Q(s,a)← Q(s,a) + α[r + γmaxa′Q(s’,a’) - Q(s,a)];
7 s← s’;
8 while step is not terminal;
9 while episode is not terminal;
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Figure 3.4: In-network Q-learning solutions. (a) Register-based Q-learning and
(b) M/A table-based Q-learning.

The main challenge to implementing in-network Q-learning is updating the

Q-table. This includes where to store the Q-table, how to calculate Q-value, and

how to maintain history action, state, and reward information. To address these

challenges, I introduce two new solutions: one purely in the data plane, and one

combining data and control planes.

The first solution implements Q-learning entirely in the data plane using reg-

isters, as shown in Figure 3.4 (a). In this solution, the Q-table and some parame-

ters (e.g., previous state, action, reward) are stored in register arrays. The work-

flow of this register-based Q-learning is as follows. When a new packet arrives

(Input Packets in Figure 3.4 (a)), it is associated with environment’s information

including new state (s′) and reward (r) (past state s and action a are optional),

reflected in line 5 of Algorithm 1. The rewards Q(s′, ∗) are read from the Q-table

stored in registers (shown in Figure 3.4 (a) step “Register: Q-table”). The new ac-

tion (a′) is calculated using logic based on an ϵ-greedy algorithm. The previous

Q-value (Q(s, a)), state (s), and action (a) are read from registers and the registers

are updated with the new values (Q(s′, a′), s′, a′) (line 7 in Algorithm 1). The reg-
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isters in this step can be changed to packet headers if the input packet contains

these values. The Q-value update is done in the step “Calc and Update” (line 6 in

Algorithm 1). For the update calculation, the multiplication results between all

intermediate values and the learning rate or discount factor are pre-computed,

quantised, and stored in two M/A tables, removing the need for multiplication

which is unsupported within the data plane. After the new Q-value is computed

and the Q-table is updated, the packet (or another object or function) will return

the new action (a′) to the environment (line 4 in Algorithm 1). This procedure

will iterate, with the agent taking the new action and getting the reward from

the environment.

The second solution moves complex operations from the data plane to the

control plane, as shown in Figure 3.4 (b) and Figure 3.5. The workflow of this

M/A table-based Q-learning is as follows. Like the first solution, an input packet

is associated with the previous state & action (s & a) and the new (current) state &

reward (s′ & r). The reward of all actions is read from the Q-table, implemented

as a M/A table, and the new action (a′) is selected based on an ϵ-greedy algo-

rithm. The new action (a′) is sent back to the environment to guide the agent’s

behaviour. Different from the registers used in the first solution, M/A tables can

not be updated in-band. Instead, the control plane (e.g., the switch CPU) needs

to update the entries. The current reward (r) and state (s′) are brought to the con-
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trol plane using update packets. The update packets can be generated from the

switch CPU, sent by the environment, or generated (mirrored) by the switch. As

the update process happens in the control plane, there is no need to calculate the

new Q-value in the data plane. The new Q-value can be calculated in the control

plane before the table update. After the Q-table has been changed, the control

plane updates the changed table entry in the data plane.

The two Q-learning solutions presented in this section introduce trade-offs:

the register-based solution will react faster to changes (sub-µs vs tens of µs) and

can process updates at line rate. The M/A-table approach, on the other hand,

can handle a larger state space, requires fewer resources, and can support more

complex reinforcement learning implementations. Further aspects of implemen-

tation are discussed in Section 7.4.

3.3.5 Potential Extensions

This thesis currently supports four direct-mapping models, which apply alter-

native operations or approximations to overcome constraints on programmable

network devices. Additionally, other ML models with a format close to the M/A

pipeline are also candidates for direct-mapped mappings, such as DNN [146],

CNN [26] and LSTM [86].

3.4 Encode-Based Methodology

Many classification algorithms aim to find borders in either the original feature

space or the mapped feature space. The area confined by a set of borders (par-
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titions) is labelled as a class. Algorithms use different methods to define their

borders. Some use complex functions, while others use linear functions for ap-

proximation. The proposed encode-based mapping typically uses linear borders

to slice the feature space with a code to represent a certain area within the space.
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Figure 3.6: Mapping methodology of the encode-based solutions.

In a general encode-based model, the mapping to the data plane starts with

slicing input feature space into classes, using feature tables and a decision table.

As shown in Figure 3.6, feature space (e.g., two-dimensional space) is sliced into

6 areas (i.e., area 0 to area 5 ) by 5 partitions (i.e., partition Partition 1 to partition

Partition 5 ). Mapping this ML model to a M/A pipeline requires two feature tables,

recording the mapping from feature values to codes, where code pairs represent

an area (e.g., area 3 coded as f 1-code 3 & f 2-code 2). The mapping from codes

to labels is stored in a decision table. In an n dimensional feature space, the model

similarly needs n feature tables and 1 decision table. Encode-based models vary

depending on how the feature space is split. The realisation details of supported

models are provided below.
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3.4.1 Decision Tree (DT)

Decision tree uses a top-down decision process, splitting the feature space at

each branch (node) until reaching the leaf nodes [212]. Figure 3.7 shows a sam-

ple decision tree model and a two-dimensional input feature space split by its

branches. The similarity between Figures 3.6 and 3.7 indicates that the general

encode-based solution fits the decision tree model. For an n features input space,

an encode-based decision tree (DTEB) requires n feature tables, encoding each

feature value. The encoded feature space is mapped using a decision table to

labels. All feature tables share a single pipeline stage (within target limitations)

and the entire mapping requires only two logical stages.
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Figure 3.7: Feature space split in tree-based models.

To realise DTEB mapping, I use four steps, as shown in Figure 3.8 for Tree 2.

The input to the process is a trained decision tree model. In the step titled “Find

feature splits”, the algorithm collects all the branches related to each feature.

The feature values are encoded (mapping an area to a code word) and saved as

a feature table in the step “Generate feature table”. The encoding is determined

by the splitting conditions of the branches. The algorithm associates each area

in the feature space with a leaf node, and determines the range of values it in-
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cludes. Finally, “Generate the tree table” (also named code or decision table)

links mapping from leaf nodes to codes pointing to their areas.
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Figure 3.8: Ensemble trees (Tree 1&2) and Decision Tree (Tree 2) models’ map-
ping workflow using the encode-based methodology. The upper part of the
flowchart mainly illustrates the M/A tables generation process of Tree 2.

To further improve its performance, in this research, DTEB uses default ac-

tions in tree tables (M/A table in the pipeline) to store the most common label,

along with using the ternary match, longest prefix match (LPM), or range match

in all tables. These reduce the number of table entries, saving significant memory

resources (§4.4.2).
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3.4.2 Random Forest (RF)

Random forest is one of the popular models generated by the bagging tech-

nique [120], a parallel learning sampling technique that trains a series of inde-

pendent, homogeneous models in parallel, and uses the aggregate output of each

model according to some strategy. In random forest, different trees are trained

on different data and every tree model has the same importance. By applying the

encode-based methodology to random forest, I introduce a new RFEB algorithm

mapping, which allocates trees in parallel and decides the label (classification

decision) using a voting table, as shown in Figure 3.9. In the voting table, RFEB

model makes the decision based on DTEB votes. Figure 3.8 shows our random

forest workflow and a toy example of mapping a two-tree random forest model

to M/A format. For a random forest model with n input features and m trees,

the mapped model uses n feature tables and m tree tables. In each feature table,

the codes (cit1, cit2, . . . , citm|i ∈ n) for all trees are stored as actions. As noted in

Section 3.4.1, n feature tables can share a stage. Similarly, m decision tables, one

per tree, can share a stage and be looked up in parallel. The voting table re-

quires a third logical stage. Compared with if/else logic [213] and depth-based

solution [119], the proposed RFEB is scalable and saves stages (shown in §4.4.2).

Logical Stage 1              Logical Stage 2          Logical Stage 3

…
!"#$%&"	(

!"#$%&"	2 *+#,,-!-.#$-/(	0".-,-/(1&""	2
…

!"#$%&"	1 1&""	1

1&""	( Decision Tree     Ensemble Trees

Figure 3.9: Differences between decision tree and ensemble trees in M/A table
usage. Figure 3.8 shows table generation workflow.
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3.4.3 XGBoost (XGB)

XGBoost is a different type of ensemble tree model. Based on boosting, in XG-

Boost, a serial learning sampling technique samples data under the distribution

based on the learning results of the last iteration [172]. Each subsequent tree is

trained to estimate the errors of the previous trees. A primary difference between

XGBoost and random forest is that XGBoost accumulates probabilities from each

tree’s leaf nodes to make the final decision [38]. However, calculating proba-

bilities within an M/A pipeline is non-trivial or costly in resources. Instead, I

introduce a new XGBoost (XGBEB) solution, encoding the probabilities in each

tree and storing them in M/A tables (tree table in Figure 3.8). Specifically, each

code (c∗t∗) in the feature table represents a unique probability or a small range

of probabilities. To create the decision (codes-to-label) table, the XGBoost’s map-

ping workflow calculates the cumulative probabilities and expected output la-

bel in advance for each code combination. XGBoost’s probabilities addition and

comparison operations are therefore replaced by simple codes-to-label look-ups

in the final decision process. Multiple discrete probabilities are mapped to the

same code if they lead to the same label mapping, thus saving resources. XGBEB

uses the same amount of logical stages as RFEB.

3.4.4 Isolation Forest (IF)

Isolation forest (IF) is an unsupervised ensemble model based on random for-

est [126] and is mainly used for outlier detection. In an isolation forest, to make

the decision, the total number of branches used in the forest decision is compared

to an anomaly threshold, and the fewer branches (shorter path length) used, the

more likely the sample is an outlier. Equation 3.1 shows this process, where x
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is one input, h(x) is the path length, t is the total number of training inputs, γ is

Euler’s constant, and E(h(x)) is the average h(x) of a collection of trees.

E(h(x)) ≤ −(2(ln(t − 1) + γ) − 2(t − 1)/t)log20.5 (3.1)

In the data plane, recording the path length is difficult. Consequently, the path

length for all leaf nodes in the forest is precomputed. To realise Equation 3.1

in the M/A pipeline and store these values, our newly proposed isolation for-

est (IFEB) adopts a method similar to XGBEB. Specifically, the number of passed

branches h(x) can be first encoded with user-defined granularity, which can bal-

ance resource consumption and accuracy. These encoded values are stored in

tree (code) tables (as shown in Figure 3.8 Tree Table 1 & 2). The mapping be-

tween the number of passed branches per tree and the final label is calculated

in advance and stored as a M/A table named code-to-label. This substitution of

threshold operations with lookup tables saves stages in IFEB.

3.4.5 k-Nearest Neighbor (KNN)

The k-nearest neighbors (KNN) first finds k closest training samples to the testing

input in the feature space. Then, in a classification task, the algorithm categorises

the testing samples into the label with the largest number of closest training sam-

ples according to the majority voting rule. This process can be treated as splitting

the feature space by distance according to its k-nearest neighbours. A tree data

structure provides a feature space slicing approximation and labelling [167, 66].

This research newly maps k-nearest neighbor to the data plane using the encode-

based methodology and tree data structure. Figure 3.10 shows an example of ap-

plying Quadtree to do feature space slicing. Specifically, in a higher dimensional

feature space, at each layer of the tree, the input n dimensional feature space is
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divided and labelled into 2n equal parts in the same order. k-nearest neighbor

requires a code of d × n bits to represent each area when the maximum depth

is d. The feature space is split continuously until the tree reaches the maximum

depth or all vertices of the current unit belong to the same class. This tree-like

splitting approach enabled storing all codes in a ternary table (Figure 3.10) or

several feature tables and a decision table (Figure 3.6), thereby no need to store

any testing data and reducing memory consumption. This method can be also

applied in the following k-means (§3.4.6).

Code
00 - 10 - 00
00 - 10 - 11
11 - 01 - 00
11 - 01 - 11
01 - 11 - 00
01 - 11 - 01
01 - 11 - 10
01 - 10 - 01
01 - 10 - 10

Centroid

Centroid 0
Centroid 1

Centroid 0’s vertices
Centroid 1’s vertices
Centroid 1&2’s vertices

0000**       0011**       1100**       1111**

0101**       0110**       1001**       1010**

0100** 

1110** 

Figure 3.10: KNN and KM workflow using encode-based solutions.

3.4.6 k-means (KM)

Encode-based k-means (KMEB) labels the input based on the distance between

the data point and each centroid [62]. k-means is a typical classification method

based on feature space slicing. This research implements KMEB using n-

dimensional tree splitting [167], building upon Clastream [66], a solution predat-

ing k-nearest neighbor. KMEB labels the input based on the distance between the
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data point and each centroid [62]. The input feature space thus can be divided

into small pieces. Figure 3.10 shows a KMEB toy example, a variation on Clus-

treams’s [66] solution, which encodes the feature space (2 dimensional) by using

a Quadtree [167]. For this two-dimensional input toy example in the figure, this

method uses fine-grained squares to describe the boundaries and uses coarse-

grained squares to represent spaces inside. The level of detail in its boundary

depiction depends on the trade-off between accuracy and memory overhead.

After the feature space is well split, this method stores the information of each

piece in the TCAM table. There are two methods to index the feature space. The

first one, as shown in Figure 3.10, uses consecutive codes to index (encode) each

input feature after assigning each block to a class (Figure 3.6). This method is

intuitive. Although Exact-to-TCAM is a classical network problem, it is not easy

to find the most suitable and efficient way to conduct the transfer. In compari-

son, the second method uses the Quadtree index only, as shown in Clustreams’

work [66]. In this method, the feature space is easier to convert to the TCAM

table but requires pre-processing before the packet is sent to programmable net-

work devices.

3.4.7 Potential Extensions

This thesis currently supports six encode-based models. This methodology

demonstrates high generality, making it applicable to the majority of ML mod-

els. However, among all ML models, those employing feature space partition-

ing with a limited number of linear slicing, are especially well-suited. In addi-

tion to the models previously discussed, CatBoost [159], LightGBM [106], and

AdaBoost [63] are examples of additional models that can potentially be imple-

mented using encode-based methodology.
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3.5 Lookup-Based Methodology

Many ML algorithms require mathematical operations on input features to de-

cide a label, commonly too complex to implement in a hardware data plane.

The lookup-based methodology uses M/A tables to store intermediate results

of these operations and thus enable realising in-network ML. As shown in Fig-

Feature n Table

Input: Feature n value !!
Output: Feature n codeFeature 2 Table

Input: Fearure 1 value

Output: Feature 1 code

…
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"#"$ + "##$ +⋯"#!$ = )$
…

Input Feature Space

Decision Process Decision (Optional)

Decision Table

Input: Votes

Output: Decision

Inputs: !", !#, … , !!

Figure 3.11: Mapping methodology of lookup-based solutions.

ure 3.11, any ML algorithms with a Decision Process (a set of polynomials) can

use lookup-based solutions. In lookup-based solutions, feature tables store the

mapping between each input feature value and intermediate results. These in-

termediate values are then used for the remaining operations, typically addition

and comparison, as a final logic stage. There are alternative design choices (vari-

ations) for table design to store intermediate results, mainly differentiated by the

granularity of the intermediate results. For instance, one approach involves util-

ising all features x1, x2, . . . , xn as the input and directly output the summation of

all intermediate results IRi + IR2 + . . . + IRn for equations 1 to k. However, the

variation introduced in this section strikes the optimal balance between memory

usage and processing stages, aligning most effectively with the resource char-

acteristics of programmable network devices. The methodology in this section

is inspired by the utilisation of lookup tables to implement ML algorithms on
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FPGAs in IIsy [218].

3.5.1 Naı̈ve Bayes (NB)

As a statistical classification method, naı̈ve Bayes is the general term for algo-

rithms based on Bayes’ theorem [22] shown in Equation 3.2, which is one of the

simple classical Bayes models.

P(xi|y) =
P(y|xi)P(xi)

P(y)
(3.2)

Based on the posterior probability introduced by Bayes’ theorem, the algorithm

tests the probability of each set of inputs with each label, under the assumption

that each input feature is independent. As shown in Equation 3.3, where x is the

input and y is the label, the label with the highest probability is the prediction

result.

ŷ = arg max
y

P(y)
n∏

i=1

P (xi | y) (3.3)

One lookup-based naı̈ve Bayes mapping solution, proposed in IIsy [218], used

features as the direct input to M/A tables, outputting the respective posterior

probabilities of all their classes. This method only works when the range of in-

put values is narrow. Otherwise, the table will be excessively large, as all inter-

mediate results P (xi | y) are multiplied. In this research, I introduce an enhanced

lookup-based naı̈ve Bayes mapping, which uses logarithms to convert multipli-

cation into addition, as shown in Equation 3.4.

ŷ = arg max
y

[map(log2P(y)) +
n∑

i=1

map(log2P (xi | y))] (3.4)

This mapping fits the standard lookup-based methodology, shown in Fig-

ure 3.11, using n feature tables (e.g., Input: xi, Output map(log2P(xi |

y1)),map(log2P(xi | y2)), . . . ,map(log2P(xi | yk))) for any k classes inference task.
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The logarithm operation both reduces operation complexity and lowers mem-

ory consumption. As in all models realised using look-up methodology, these

mapped intermediate results are quantised and then stored in M/A tables. In

the final logic, all intermediate results for each class are summed up and com-

pared (replacing arg max) to get the output label. Based on this method, this work

also supports variations (such as GaussianNB and BernoulliNB [154]), catering

to diverse types of input variables.

3.5.2 Autoencoder (AE)

Autoencoder (AE) has an unsupervised neural network architecture, typically

used for representation learning through data encoding and decoding [145]. By

design, an autoencoder is capable of learning efficient compression of a set of

data to obtain a knowledge representation of the original input, as well as sub-

sequent reconstruction based on the representation. In general, it discovers the

underlying structure of data and can be applied for various purposes, such as

dimensionality reduction, feature extraction, image denoising, and anomaly de-

tection. Due to the resource constraints on programmable network devices, this

research only focuses on the one-layer autoencoder used for dimensional reduc-

tion. Autoencoder’s workflow is composed of an encoder and a decoder [125].

Xnew = XW + Bias (3.5)

The forward path of the single-layer encoder network is interpreted as Equa-

tion 3.5, where X is the high dimensional original input and Xnew are the outputs

with lower dimensions. The encoder’s equation has a similar format as polyno-

mials depicted in Decision Process (black box in Figure 3.11), enabling this re-

search to introduce a new mapping for autoencoder, based on the lookup-based
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methodology. Specifically, when Xnew has k dimensions, W is a n×k weight matrix.

The mapping uses n feature tables to store the intermediate results of all output

feature dimensions (xiwi
1, xiwi

2, . . . , xiwi
k) under the corresponding feature i. The

final logic sums all intermediate results in each output dimension and the Bias to

get the value of new features. This mapping avoids multiplication operations in

autoencoder and can achieve a similar computational overhead as naı̈ve Bayes.

3.5.3 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical method that is commonly

utilised to reduce the dimensionality of large datasets while preserving most of

the data variation [211]. PCA finds a new axis with a predefined dimension that

can best represent the feature space [67] and it computes the cumulative pro-

jection of each component on each data point onto new components to conduct

dimension reduction. As shown in Equation 3.6, the forward path of a trained

PCA has two main steps: shift and map.

Xnew = (X − Xmeans)Components (3.6)

In this equation, the input X is the array [x1, x2, ..., xn] with n input features, and

Xmeans = [x1
means, x2

means, ..., xn
means] is the mean value of each feature. Components is a

transformation matrix with n rows and m columns. The output Xnew is the array

[x1
new, x2

new, ..., xm
new] with m output features. This matrix multiplication process can

be represented as polynomials, fitting the mapping of lookup-based methodol-

ogy. Based on this, the newly proposed lookup-based PCA requires n feature

tables. In each feature table, all intermediate results related to that feature are

stored. For example, all results related to feature i, including IR1
i = (xi − xi

means)w
1
i ,

IR2
i = (xi − xi

means)w
2
i , . . . , IRm

i = (xi − xi
means)w

m
i , are stored in the action data field
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of feature table i. The final logic of PCA is similar to the autoencoder, which is

the summation of intermediate results of each new dimension and the construct

of new feature values. Due to a similar structure in the M/A pipeline, PCA can

achieve comparable memory and stage consumption as naı̈ve Bayes.

3.5.4 Support Vector Machine (SVM)

Support vector machine (SVM) is a popular classification algorithm, which per-

forms well in solving nonlinear dataset problems and high dimensional pattern

recognition problems [49] with a small sample size. The SVM model projects

data into hyperspace and it aims to find hyperplanes that perfectly divide the

data. Each hyperplane separates the data into two sub-classes and keeps the

data as far away from the hyperplane as possible. In the linear non-separable

problem, SVM applies the kernel method to map data into high-dimensional

feature space. For different datasets, different mapping patterns are required.

The common kernel function includes linear, polynomial, radial based func-

tion (RBF) [35], etc [153].

w1
1x1 + w2

1x2 + . . . + wn
1xn + d1 = 0

w1
2x1 + w2

2x2 + . . . + wn
2xn + d2 = 0

. . .

w1
mx1 + w2

mx2 + . . . + wn
mxn + dm = 0

(3.7)

For instance, Equation 3.7 shows how an SVM model is constructed by the linear

kernel for a k classification task with n dimensional input data X = {x1, x2, . . . , xn}.

Each line of the equation represents a hyperplane as the border of two sub-

classes. The model will generate m hyperplanes where m = k(k−1)/2. The output

label can be determined by counting the votes from all hyperplanes and using

logic or a decision table [49]. This process is similar to the Decision Process in Fig-
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ure 3.11. Lookup-based SVM is supported in this research based on the proposal

in [243]. To achieve scalability, n feature tables will be used to store the inter-

mediate results from all hyperplanes (e.g., Input: xi, Output wi
1xi, wi

2xi, . . .wi
mxi).

All feature tables belong to a single logical stage and use the addition operation

for hyperplanes (initialised by bias bi). This method saves memory and stages

compared with other approaches [218].

3.5.5 k-means (KM)

The k-means workflow labels inputs according to their distance to the trained

k centroid [62], as described in Equation 3.8. A lookup-based k-means (KMLB)

mapping, as in IIsy [218, 243] and Figure 3.11, uses n feature tables to store inter-

mediate results in parallel.

Di =

√
(x1 − ci

1)2 + (x2 − ci
2)2 + . . . (xn − ci

n)2 (3.8)

Equation 3.8 shows how to calculate the distance between each set of input to

each cluster, where X = {x1, x2, . . . , xn} is the input and Ci = {ci
1, c

i
2, . . . , c

i
n} is the

centroids of cluster i. The complex mathematical operations, including square

and square root, make it challenging to fit on programmable network devices.

Due to the monotonically increasing nature (when the value under the square

root is positive) and low curvature, the square root operation in Equation 3.8 can

be removed from the data plane implementation with minor accuracy influence.

To replace the square operation, KMLB solution uses map(.) operation and con-

structs feature tables with input xi, output map(xi−c1
i ),map(xi−c2

i ), . . . ,map(xi−ck
i ).

The map(.) function maps all input values to a domain {1 : 2nbits/n}, where nbits is

the width of each action data. With this map(.) operation, the distance values are

mapped to a proper range, lowering the accuracy loss.
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3.5.6 Potential Extensions

This research currently supports five lookup-based models. Additional ML al-

gorithms that can be converted to a set of polynomials, such as Lasso [200, 65],

linear regression [144], and polynomial regression [189], can potentially be im-

plemented using lookup-based mapping, with a similar methodology.

3.6 Analysis and Discussion of Table Size and Stage

Assessing the resource consumption of algorithm mappings mentioned in the

preceding sections is important, as it significantly impacts the scalability and

performance of these models on programmable network devices. While this re-

search has only manually validated the correctness of these mappings in either

emulation or software environments at the stage of this chapter, resource con-

sumption of these in-network ML algorithms is briefly analysed on a theoretical

basis, categorised by mapping methodology. The detailed experimental results

are presented in the subsequent Chapter 4, whose results align with this analysis.

Direct-Mapping Models. As the model realised by direct-mapping method-

ology lacks a standardised template and the algorithm mapping using this

methodology is realised mainly case-by-case, this analysis is primarily oriented

towards some common characteristics. In terms of table entry overhead, the

direct-mapped algorithms are usually efficient. These algorithms usually do not

employ mappings to replace complex logic and operations (while if lookups are

used, the memory requirements may increase significantly). Instead, these algo-

rithms mainly apply alternative operations that are supported by programmable

network devices to substitute (e.g., replacing matrix multiplication with Pop-
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count & XNOR). However, implementing these alternative operations usually

consumes pipeline stages. Together with the stages used to realise the full-size

unmodified (or slightly modified) inference workflow, these direct-mapped al-

gorithms commonly require a large number of pipeline stages.

Encode-Based Models. Encode-based algorithms follow a standard structure,

utilising a sequence of feature tables and a decision table. In this context, con-

sider a use case with a feature space containing n inputs ranging from 1 to fmax.

Following model training, each feature i is divided into ki partitions within the

sliced feature space. After encode-based mapping to the data plane, each fea-

ture table contains f i
max entries. The decision table has a size of

n∏
i=0

ki. As there is

no interdependence among feature tables, they can be accommodated in a sin-

gle logical pipeline stage. The overall resource consumption for this algorithm

is
n∑

i=0
f i
max +

n∏
i=0

ki table entries and 2 pipeline stages. If an LPM match is applied

to all feature tables, this value can be reduced to
n∑

i=0
e f i

max +
n∏

i=0
ki, where e denotes

the efficiency factor of LPM mapping. This can significantly reduce table entry

consumption, particularly when the feature range k is large. For the encode-

based methodology, while the model can effectively control the usage of pipeline

stages, the table entry consumption may rise significantly when the slicing of the

feature space is overly complex, primarily due to the
n∏

i=0
ki term.

Lookup-Based Models. For algorithms supported by lookup-based mapping

methodology, they have a similar structure consisting of a sequence of feature

tables, followed by logical operations. Consider a use case with n input fea-

tures, having a range of (0, f i
max] for a given feature i. Similar to the encode-based

methodology, the lookup-based algorithm requires
∑n

i=0 f i
max table entries (just

remove the table entry in the decision table). However, since the number of dif-

ferent intermediate result values is usually large, the LPM mapping is not that
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effective in this case. In terms of stage consumption, due to the interdependency

of intermediate results from each feature table, the algorithm requires 1 + l logi-

cal stages, where l is the number of stages used in final logic (typically requires

⌈log2n⌉ to n + 1 stages for a use case with two classes). For models implemented

using lookup-based methodology, the required table size is relatively control-

lable and proportional to the number of features. The consumption of stages

heavily depends on the number of features and classes from the use case.

Discussion. This research finds that for direct-mapping in-network ML algo-

rithms, memory consumption is generally low, but the complexity of computa-

tions and alternative operations demands high requirements for stage usage and

special operations. Regarding encode-based in-network ML algorithms, they

benefit from parallelism and manage stage consumption effectively, yet exces-

sive model sizes can still lead to significant memory consumption. In the case of

lookup-based in-network ML algorithms, both memory and stage consumption

scale linearly with setups, but are more susceptible to use-case characteristics.

3.7 Summary

This chapter presents a comprehensive implementation of various in-network

ML algorithms. By abstracting deployment approaches of in-network ML into

three mapping methodologies (§3.2), this research extends the scope of sup-

ported algorithms and provides diverse choices for algorithm implementation.

Specifically, the chapter details the mapping of four in-network ML algorithms

using the direct-mapping methodology (§3.3), six algorithm mappings employ-

ing the encode-based methodology (§3.4), and five algorithm mappings utilising

the lookup-based methodology (§3.5). Additionally, I theoretically analysed the
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data plane resource consumption for each mapping methodology (§3.6). While

specific experiments were not conducted in this chapter; all experimental re-

sults will be addressed in the subsequent chapter with the help of an automated

framework.
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CHAPTER 4

AUTOMATED DEPLOYMENT FRAMEWORK

In-network ML inference provides high throughput and low latency. It has bet-

ter power efficiency, can be deployed along the datapath, and improves appli-

cations’ performance. Despite its advantages, implementing and updating in-

network ML models is cumbersome and requires significant expertise in pro-

grammable data planes, which hinders the wide adoption of in-network ML

algorithms (§4.1). In this chapter, I present Planter: a modular and efficient

open-source framework for rapid prototyping of in-network ML models across

a wide range of platforms and pipeline architectures (§4.2). Building upon the

general mapping methodologies for ML algorithms in Chapter 3, a wide spec-

trum of in-network ML algorithms and their variations are supported. This

framework is implemented using Python and P4, supports multiple architec-

ture and target programmable network devices, and has already been further

extended by users to new fields and applications (§4.3). With the help of the

proposed Planter framework, in this chapter, I evaluate the in-network ML al-

gorithms described in the previous chapter (§4.4). The evaluation results show

that the proposed new mappings improve ML performance compared with pre-

vious model-tailored works, while significantly reducing resource consumption

and co-existing with network functions. I also show that these algorithms can

run at line rate on unmodified commodity hardware, providing billions of infer-

ence decisions per second. The contents of this chapter are based on framework

design and evaluation-related materials published in [243, 244, 245, 246].
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4.1 Motivation

In practical in-network ML deployment, model implementation is not a one-

time task, particularly in the pursuit of optimal performance. Model compari-

son, tuning, or retraining is unavoidable, but conducting these procedures for

in-network ML models is cumbersome. Figure 4.1 demonstrates the effect of ML

model changes in terms of LOC. Common changes like increasing model size,

adding more features, or moving between targets require changing hundreds

of lines of code (LOC) in the data plane, the same scale as the entire original

code. Changes also affect M/A table rules, added or removed through the con-

trol plane. A framework for rapid prototyping can save endless debugging and

improve the efficiency of model deployment. The absence of a framework fur-

ther hinders efficient model comparison, selection, and replacement, as well as

swift migration among use cases. This chapter aims to narrow the gap to pro-

duction deployment of in-network ML, and sets the following design goals:

Rapid Deployment. Mapping ML models to programmable network devices

using P4 should be easy. The challenges of algorithm mappings have been ad-

dressed in the previous chapter. However, the deployment of in-network ML

models is also complex. New or changed targets, architectures, and models may

result in significant changes. An easy-to-operate solution is needed to handle the

deployment process and flexibly adapt to changes (§4.2.1).

Extensibility and Portability. Extending and porting different inference solu-

tions should require minimum effort. ML algorithms are emerging rapidly and

new programmable network targets are reaching the market. The framework

should be able to support new ML algorithms, architectures, and targets. It

should be easy to add new use case scenarios and to port designs between differ-
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Figure 4.1: LOC changes as a result of model changes (UNSW dataset [140]). RF
- depth of 2 to 5, XGB - 2 to 6 trees, NB - 2 to 5 features, KM - v1model to T NA,
NN - 2 to 5 layers. All the used acronyms are listed in Abbreviations.

ent devices. This calls for a modular design with elements easily added, updated,

or replaced, independently of other components (§4.2.2 - §4.2.3).

Automated Configuration. Not all in-network ML users have ML expertise. It is

important to have a tool to handle compilation failures and automatically select

the best hyperparameters under constraints. An automated frontend is needed

to drive the in-network ML generation framework in realising models (§4.2.4).

4.2 Framework Design

Chapter 3 presented new and more efficient in-network ML mapping method-

ologies. Using the Planter framework, those can be rapidly prototyped on dif-

ferent targets. This section addresses four aspects in the design of Planter as an

automated and “one-click” framework:

1. What should be the functionality supported by the framework, and what

should be the respective framework architecture?
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2. How to generate efficient data plane designs for different deployments?

3. How to create a modular framework that is extendable to different models,

targets, architectures, and use cases?

4. How to provide ease of use, handle failures and tune hyper-parameters?

By addressing these aspects in this section (§4.2.1-4.2.4), I provide a framework

that goes beyond the state-of-the-art and enables wide adoption of in-network

ML (§4.4).

4.2.1 Functionality, Workflow, and Main Components

The goal of Planter is to provide as simple as possible in-network ML devel-

opment environment for users. For example, model developers should be able

to focus on model mapping without worrying about use cases, while use case

practitioners can develop just the use cases and pick from a given set of mod-

els and targets. To achieve this goal, in Planter functions are strictly partitioned

according to their type and are connected using standard interfaces. In turn, an

in-network ML application is divided into four types of elements: ML model-

related, use case-related, architecture-related, and target (test)-related. The main

functions of Planter’s backend workflow are shown in Figure 4.2. Use case related

functions (amber) include a Data Loader ❶ for training & testing purposes and

a Common P4 ❸ to generate use case-specific P4 code (code for feature extrac-

tion from data, e.g., U in Algorithm 4.1). Model related functions (red) are formed

by a Model Trainer & Converter ❷ for training and converting a model to M/A

format and a Dedicated P4 ❸ for generating model related P4 code (e.g., M in

Algorithm 4.1)). Architecture related functions (purple) includes a Standard P4 ❸
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Figure 4.2: The Planter framework backend components and workflow steps (❶
to ❼).

generator that generates architecture-related P4 code and combines the outputs

from Common and Dedicated P4 to generate the complete P4 program. Target re-

lated functions (green) include a Compiler ❹ that compiles and runs the generated

in-network ML inference program and a Tester ❹ for validating the functionality

of the program.

The workflow of Planter’s backend, shown in Figure 4.2, has seven steps.

In the first two steps, Planter loads a dataset ❶ and trains it ❷. The model is

mapped to P4 ❸ using selected architecture and target. The generated P4 code is

compiled ❹ and loaded to the target’s data plane ❺. In step ❻, table entries and

registers are loaded through the control plane. Last, in step ❼, an auto-generated

functionality test is run on the target. The generated data plane, shown in Fig-

ure 4.2 A , has three components: standard switching functionality, ML feature

extraction, and ML inference. The ML feature extraction and inference are in

parallel to the standard functionality, while the P4 parser operation is merged.
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A #include <core.p4>
A #include <tna.p4>
U const bit<16> const1 = 0x01;
M const bit<16> const2 = 0x02;
A struct header_t{ // Header
U header_U_h header_U;
M header_M_h header_M;
A }
A struct metadata_t{ // Metadata
U bit<10> meta_data_U;
M bit<10> meta_data_M;
A }
A parser SwitchParser(...){ // Parser
U state parse_header_U{...}
M state parse_header_M{...}
A }
A control SwitchIngress(...){ // Ingress
U ... // Use case related Tables, Actions, Registers ...
U ... // (for feature extraction)
M ... // ML model related Tables, Actions, Registers ...
M ... // (for inference)
A apply{
U ... // Use case model related logic
U ... // (for feature extraction)
M ... // ML related logic
M ... // (for inference)
A }}
A control SwitchEgress(...){ // Egress
A U M ...}
A Switch(...) main; // Main

Algorithm 4.1: Sample in-network ML P4 code. A : architecture-related code
generated by Standard P4 in Figure 4.2 ❸. U : use case-related code generated
by Common P4 in Figure 4.2 ❸. M : ML model code generated by Dedicated P4
in Figure 4.2 ❸.

4.2.2 Code Generator

The data plane’s P4 code is mainly determined by the selected ML model, P4 ar-

chitecture, and use case (three out of four function groups in § 4.2.1). As shown

in Algorithm 4.1, when Planter generates P4 code, architecture-related ( A ) code

forms the skeleton of the program, and use case-related ( U ) and model-related

( M ) code snippets are added into the skeleton. To simplify the coding expe-

rience, Planter provides commonly used architecture templates as skeletons in
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the Standard P4 file (Figure 4.2 ❸). P4’s sequential execution can be a prob-

lem when assembling the code snippets. Planter ensures the correct assembly

order by utilising the Standard P4 to coordinate the Common & Dedicated P4

parts (Figure 4.2 ❸). This is achieved by alternately calling specific functions that

generate ML (inference logic)-related code from Common P4 and use case (fea-

ture extraction)-related code from Dedicated P4 at each designated place (such

as ingress apply block) to accurately merge the model and use case-related codes.

This approach enables Planter’s extensibility, fitting different models and use

cases into the Standard P4 generator.

4.2.3 Modular Framework Design

Planter proposes a modular framework to enhance extensibility. The framework

isolates the code within individual modules for each ML model, architecture, tar-

get, or use case. Modules are independent and can be flexibly and easily replaced

through configuration. Additionally, Planter provides a set of common functions

for all modules, such as exact-to-LPM/Ternary table conversion. Planter sup-

ports generating a dependency graph, showing all the used functions, and their

dependencies. This simplifies debugging and informs modules’ swapping.

Python Architecture Target Model Use Case Data Function

Min LOC 123 291 293 54 16 6

Avg LOC 137 542 477 91 88 29

Max LOC 145 793 665 127 148 130

Modules 6 6 52 10 20 18

Table 4.2: The number of LOC and modules (including module variations) in
Planter modular design.

To illustrate the modularity of Planter, Table 4.2 presents the average and
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maximum LOC of different modules in Planter. ML models require an average

of 477 LOC, and at most 665 LOC. Supporting a new P4 architecture requires

less than 150 LOC, and supporting a target requires less than a thousand LOC.

This lightweight implementation of architectures, targets, and models is a key

advantage of Planter. Shared framework functionality (“Function”) requires 377

LOC in total. Combined, till now, Planter has 52 implemented ML modules, 6

targets and architecture models, 10 use case modules, and 20 datasets.

4.2.4 Planter Frontend

Although the Planter backend (§4.2.1-4.2.3) enables the realisation of ML mod-

els within the data plane, fitting the models on resource-constrained (commod-

ity) hardware with ML performance goals needs to be addressed. The key chal-

lenge is hyperparameter selection, combining the desired inference accuracy and

minimum resource consumption. To address this challenge, Planter provides a

frontend optimiser that automates hyperparameter tuning, and fixes compila-

tion failures.

Planter Frontend Planter Framework

Select & Config.
Frontend Configurations & Backend Configs.

Auto-add Config.

User

Setup

Feedbacks

Modular Optimizers Modular Converters/Generators

Select & Config.

Figure 4.3: The combined Planter framework.

The frontend applies modular optimisation models, such as Bayesian Opti-

misation, to optimise parameters based on a predefined objective function. The

optimisation objective can be expressed as metrics such as Accuracy (acc), F1

Score (F1), or the difference between the target accuracy (target) and the model
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accuracy n−|acc−target| (n > 1). As illustrated in Figure 4.3, Planter requires users’ in-

put for frontend configurations, including datasets and model constraints. Based

on these configurations and the selected objective function, the frontend identi-

fies optimal hyperparameter settings. Subsequently, as shown in Figure 4.3, the

frontend automatically generates backend configurations, utilises the backend

(Figure 4.2) to produce data plane code & setup, and performs compilation and

testing to verify the settings. The frontend receives the test results and triggers a

subsequent training round if the outcomes are not satisfactory. For example, in

case of a compilation failure, the frontend will regenerate a more moderately

sized model. Planter’s frontend is also part of the modular design in §4.2.3.

While the backend supports experienced developers with customising model

details, the frontend is designed to help users with limited ML experience to

conduct intent-based development.

4.2.5 Planter Supported Algorithm Mappings

Planter incorporates models and mapping introduced in Chapter 3. Table 4.3

lists distinct implementations of ML models in Planter, categorised according

to the three methodologies. As shown in the table, Planter has realised seven

completely new mappings and four improved mappings proposed by this re-

search as well as supports four existing mappings. Each implemented mapping

in Planter has several variations, e.g., encode-based decision tree using Ternary

or LPM table.

72



Supported Improved New Mapping
Types SVM KM NN NB DT RF XGB IF KNN PCA AE QL†

EB ✧2 ❙6 ✓11 ✓6 ✓4 ✓2

LB ✧2 ✧2 ❙4 ✓2 ✓2

DM ✧3 ❙2 ❙4 ✓2

† As a reinforcement learning algorithm, QL is primarily implemented manually.

Table 4.3: Different ML models, and their implementation using the three pro-
posed methodologies. Notation: ✓new, ❙ improved, ✧ supported. ✧n, ❙n or ✓n

indicates n supported variations. The QL refers to Q-Learning.

4.3 Implementation

The Planter framework is implemented in more than 57k LOC in Python, and

is available at Planter’s GitHub repository [238]. The framework trains a model

using a python-based learning framework, currently PyTorch and scikit-learn

(Sklearn). Training parameters are set by the user, Planter frontend, or using

parameter tuning tools [93, 197]. A trained model is mapped into M/A for-

mat, and the framework saves table entries and generated weights (for neural

networks) into JSON/txt (target dependent) files. Data plane P4 code is con-

sequently automatically generated. Planter further generates Bash scripts to

interact with the target for model deployment and verification. The provided

control plane support is target-dependent, e.g., loading tables using P4Runtime.

The targets currently supported include Intel Tofino and Tofino2 (switch-ASIC),

AMD Alveo U280 (FPGA) over Open-NIC [216], P4Pi-BMv2 and P4Pi-T4P4S on

Raspberry Pi [115], and BMv2. Pipeline architectures include v1model [155], In-

tel TNA [97], PSA [150], AMD xsa [217] and NVIDIA spectrum. Supported ML

models and their variations are listed in Table 4.3, and use cases in §4.4.1.
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4.4 Evaluation

The evaluation in this chapter focuses on the framework and mappings (Chap-

ter 3), with practical application (e.g., complex feature extraction) in Chapter 5

and use cases in Chapter 7. The detailed hyperparameter setup used in this

evaluation for each model is summarised in Table 4.4 and 4.5. Hyperparame-

ters related to the converted model size on programmable network devices are

defined in a gradient scale to differentiate the small (S)/medium (M)/large (L)

model size. Huge (H) model size refers to setups on servers with nearly un-

limited resources, primarily employed to explore optimal model performance.

Other hyperparameters for each model remain as the default values defined in

the scikit-learn package [154].

4.4.1 Methodology and Testbed Setup

Workloads: Planter has been applied in several works for various scenar-

ios [238, 247, 245, 241, 244, 91, 228, 227, 225, 37], as discussed later in Chap-

ter 7. Some example use cases and datasets include attack detection (using

AWID3 [36], CICIDS 2017 [175], KDD99 [191], and UNSW-NB15 [140]), finance

(NASDAQ TotalView-ITCH [142] and Jane Street Market Prediction [76]), QoE

(Requet [79]) and flowers classification (Iris [60]) for brevity. This evaluation

presents only the results for attack detection (throughput and latency-sensitive,

using CICIDS 2017 and UNSW-NB15 dataset) and finance (latency-sensitive, us-

ing Jane Street Market Prediction dataset). Attack detection uses 5 features, com-

monly used for traffic classification [160, 100]: Source IP (first 8 bits), Destination

IP (first 8 bits), Source Port, Destination Port, and protocol and classifies traffic as
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either normal or malicious. The first octet of the IP address is a coarse indicator

of source/destination network. In the Jane Street Market Prediction dataset, five

features (42, 43, 120, 124 and 126) from 130 anonymised real stock market data

are used to predict buy or sell for each trading opportunity [76]. An additional

evaluation of these two use cases is provided in Chapter 5 and results for other

use cases are included in [245] and Chapter 7.

Testbed setup: The testbed uses two servers for traffic generation and monitor-

ing (ESC4000A-E10, AMD EPYC 7302P CPUs, 256GB RAM, Ubuntu 20.04LTS,

ConnectX-5 NICs). PTP with timestamping in the NICs is used for latency

measurements. The evaluated platforms are a 1) Tofino switch (APS-Networks

BF6064X, SDE 9.6.0) using a snake configuration for throughput tests. 2) AMD

Alveo U280 FPGA. 3) NVIDIA BlueField-2 DPU. In addition, 4) P4Pi [115] run-

ning on Raspberry Pi 4 Model B with 8GB RAM is evaluated twice: using

v1model over BMv2 and using T4P4S [205]. The P4Pi testbed is connected to

a server with an Intel Xeon W-2133 CPU and 64 GB RAM. Planter-generated in-

network ML models were also deployed on Dell IoT Gateway [53] and have been

evaluated in [226].

Parameter settings: Mapped in-network ML models are explored using four dif-

ferent model sizes: small (S), medium (M), large (L), and huge (H), with detailed

setups of model parameters provided in Table 4.4 and 4.5. The model size refers

to the converted data plane model size, which is a function of both training and

conversion parameters. Small to large in-network ML models are expected to fit

on the target data plane. Huge models represent the maximum inference poten-

tial of a model (per dataset) running on a server.

Evaluation metrics: The following metrics are used in the evaluation:
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Small (S) Model (for in-network ML)
Action Bits Depth Num Trees Max Leafs lr Batch Size Epoch

SVM 8
DTEB 4 1000
DTDM 4 1000
RFEB 4 6 1000
RFDM 4 6 1000
XGB 4 6 1000
IF 3 128 (Num Instance†)
NB 8
KMLB 8
KMEB 2
KNN 2 5 (Num Neighbors‡)
NN 1 1(16) 0.01 100 50
PCA 8
AE 8 0.01 100 50

Medium (M) Model (for in-network ML)
Action Bits Depth Num Tree Max Leaf lr Batch Size Epoch

SVM 16
DTEB 5 1000
DTDM 5 1000
RFEB 5 9 1000
RFDM 5 9 1000
XGB 5 9 1000
IF 9 128 (Num Instance†)
NB 16
KMLB 16
KMEB 3
KNN 3 5 (Num Neighbors‡)
NN 1 1(32) 0.01 100 50
PCA 16
AE 16 0.01 100 50
† Num Instance indicates the number of samples drawing from the training data
used to train each base estimator, which is t in Equation 3.1.
‡ Num Neighbors indicates the number of neighbours used to determine the classi-
fication of a specific query point.

Table 4.4: Parameters settings for (S)mall and (M)edium model on data plane
device/server. F - Full precision. lr - learning rate. This setting is used in all
evaluation processes in this chapter to unify the evaluation setups.
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Large (L) Model (for in-network ML)
Action Bits Depth Num Trees Max Leafs lr Batch Size Epoch

SVM 32
DTEB 6 1000
DTDM 6 1000
RFEB 6 12 1000
RFDM 6 12 1000
XGB 6 12 1000
IF 12 128 (Num Instance†)
NB 32
KMLB 32
KMEB 4
KNN 4 5 (Num Neighbors‡)
NN 1 1(48) 0.01 100 50
PCA 32
AE 32 0.01 100 50

Huge (H) Model (for server-based ML)
Action Bits Depth Num Tree Max Leaf lr Batch Size Epoch

SVM F
DTEB 30 100000
DTDM 30 100000
RFEB 30 200 100000
RFDM 30 200 100000
XGB 30 200 100000
IF 200 1280 (Num Instance†)
NB F
KMLB F
KMEB F
KNN F 5 (Num Neighbors‡)
NN F 1(48) 0.01 100 50
PCA F
AE F 0.01 100 50
† Num Instance indicates the number of samples drawing from the training data
used to train each base estimator, which is t in Equation 3.1.
‡ Num Neighbors indicates the number of neighbours used to determine the classi-
fication of a specific query point.

Table 4.5: Parameters settings for (L)arge model on data plane device/server and
(H)uge model size on server. F - Full precision. lr - learning rate. This setting is
used in all evaluation processes in this chapter to unify the evaluation setups.
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1. ML performance: Accuracy and F1 score are used to evaluate ML inference

performance.

2. Scalability performance: Memory utilisation, Table entries, and Number of

stages are used to evaluate scalability.

3. System performance: Throughput and Latency (measured by ptp4l) are used

to evaluate the system performance of mapped models.

4. Framework performance: Model training time and trained model conversion

time are used to assess Planter’s runtime performance.

On Tofino, following non-disclosure agreement (NDA) guidelines, I report the la-

tency relative to Intel’s switch.p4 reference program. switch.p4 is an L2/L3 switch

program for Tofino, including 10 network functions such as load balancing, tun-

nelling, firewall, and statistics.

4.4.2 ML Performance

This section focuses on evaluating ML-related performance, especially when

compared with server-based benchmarks and state-of-the-art works.

ML Inference Accuracy: The inference performance evaluation checks if the

mapped in-network ML models have a similar inference accuracy as running

an identical inference task on a server with the same setup, and how the size of

the model affects the accuracy. The results are presented in Table 4.6 and 4.7.

It is not suggested to compare between ML models in Table 4.6 and 4.7 as the

preference of models varies among different use cases.

The upper part in both tables shows previously proposed mappings [218, 243,
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CICIDS UNSW

Switch (M) Sklearn (M) Switch (M) Sklearn (M) Server (H)

Work Model ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

SwitchTree [119] DTDM 99.92 99.92 99.92 99.92 99.40 94.53 99.40 94.53 99.40 94.31

pForest [33] RFDM 99.80 99.79 99.80 99.79 99.38 94.44 99.38 94.44 99.42 94.51

IIsy [218] KMLB 58.40 56.80 58.40 56.80 71.28 41.88 71.28 41.88 71.28 41.88

Clustreams [66] KMEB 56.92 55.75 58.40 56.80 72.69 42.37 71.28 41.88 71.28 41.88

IIsy [218] SVM 59.24 37.20 95.04 94.94 97.31 49.32 99.23 93.51 99.23 93.51

N3IC [184] NN‡ 92.09 92.00 99.96 99.96 98.33 85.68 99.25 93.67 99.25 93.68

Planter DTEB 99.92 99.92 99.92 99.92 99.40 94.53 99.40 94.53 99.40 94.31

Planter RFEB 99.80 99.79 99.80 99.79 99.37 94.41 99.38 94.44 99.42 94.51

Planter XGB 99.98 99.98 99.98 99.98 99.42 94.53 99.42 94.53 99.43 94.59
Planter IF 44.89 35.35 37.90 31.08 84.86 58.90 63.83 45.07 86.33 55.05

Planter NB 98.99 98.95 98.99 98.96 99.25 93.68 99.25 93.68 99.25 93.68

Planter KNN 69.33 60.63 99.38 99.36 87.51 31.55 99.30 93.17 99.30 93.17

Planter PCA∗ 76.12 74.92 76.19 75.00 97.45 65.42 97.89 67.73 97.89 67.73

Planter AE∗ 99.92 99.92 99.92 99.92 99.24 93.55 99.24 93.55 99.28 93.53

Bold and underline indicate the best and second-best results among all models respectively.
‡NN is trained with PyTorch instead of Sklearn.
∗ Results of PCA and AE are the accuracy of (S)mall DT using new features.

Table 4.6: Model Accuracy (ACC) and F1 Score (F1) on CICIDS and UNSW
datasets, by using (S)mall, (M)edium, (L)arge, and (H)uge models.

247, 33, 66, 184] implemented in Planter, where these mappings were not imple-

mented before on a switch-ASIC. The lower part in both tables shows Planter’s

new & improved mappings. As shown in Table 4.6, for the same model size, all

the models have a similar accuracy performance on the programmable switch

as on Sklearn or a baseline server, verifying Planter’s mapping has no or minor

accuracy loss. The accuracy is checked using 10-fold cross-validation, with a

standard deviation of less than 0.05% for top-performing models, indicating its

statistical significance.

Table 4.7 compares the resource performance for different sizes of models. As

model size increases, some models achieve slightly higher accuracy with more

switch resources required. All small and medium-sized models proposed or up-
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UNSW

ACC (Switch) Memory (%) Latency (Relative) Stages (Tofino)

Work Model S L S M L S M L S M L

SwitchTree [119] DTDM 99.34 99.41 1.46 1.72 1.98 81.16 88.36 88.36 11 13† 15†

pForest [33] RFDM 99.25 99.39 7.71 14.01 NF 88.36 89.04 NF 11† 14† NF

IIsy [218] KMLB 71.55 71.28 3.13 3.96 5.78 21.58 21.58 21.58 7 7 7

Clustreams [66] KMEB 77.21 71.30 0.40 3.16 NF 19.52 19.52 NF 2 2 NF

IIsy [218] SVM 97.31 99.23 2.81 3.23 4.12 26.37 35.27 35.30 9 9 9

N3IC [184] NN‡ 98.33 97.50 NF NF NF NF NF NF NF NF NF

Planter DTEB 99.34 99.41 1.18 1.34 1.34 26.37 26.37 26.37 2 2 2
Planter RFEB 99.25 99.39 1.81 2.59 3.94 39.04 39.40 45.89 3 4 4

Planter XGB 99.40 99.45 1.70 6.65 NF 33.22 45.78 NF 3 5 NF

Planter IF 81.74 NF 2.01 9.01 NF 36.30 43.33 NF 5 5 NF

Planter NB 99.25 99.25 3.28 4.22 6.20 28.77 28.77 28.77 8 8 8

Planter KNN 78.24 92.73 0.23 1.89 21.01 20.74 20.74 22.22 1 1 5

Planter PCA∗ 97.29 97.47 5.78 5.78 5.78 20.89 20.89 20.89 6 6 6

Planter AE∗ 99.23 99.28 5.89 5.89 5.89 21.58 21.58 21.58 7 7 7

Bold and underline indicate the best and second-best results among all models respectively.
‡NN is trained with PyTorch instead of Sklearn.
∗ Results of PCA and AE are the accuracy of (S)mall DT using new features.

Table 4.7: Model Accuracy (ACC), resources and latency relative to switch.p4.
Using (S)mall, (M)edium, (L)arge and (H)uge models. Some models are not fea-
sible (NF) on Tofino but are feasible (†) on Tofino2.

graded by Planter are feasible on commodity hardware with less than 8 stages,

9.1% memory, and 45.78% of relative latency. The optimised mapping methods

of Planter can achieve comparable accuracy with existing mapping solutions,

but with significantly lower resource consumption. For example, a large deci-

sion tree (DT) model in Planter can reach the same accuracy as a large SwitchTree

model [119], while reducing memory by 30%, latency by 70%, and stages by 87%.

Resource consumption varies between Planter targets. For example, deploying a

decision tree model on U280 FPGA has resource usage as low as 15% LUTs and

11% registers.

Planter was integrated with switch.p4, an Intel reference L2/L3 switch. The

switch.p4 functionality coexists with Planter’s new or upgraded models with no
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or minimal cost in stages and latency, but with higher resource utilisation.

Comparison with State-of-the-Art: I compare Planter with IIsy’s proposed de-

cision tree (DT), support vector machine (SVM), naı̈ve Bayes (NB), and k-Means

(KM) [218], SwitchTree/pForest decision tree and random forest [33, 119], Clus-

treams k-Means [66], N3IC’s neural network (NN) [184], and Homunculus/Tau-

rus’s neural network [195, 197] in terms of inference performance and scalability.
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Figure 4.5: Comparison with state-of-the-art in accuracy (a) and stage consump-
tion (b) & (c). UNSW dataset is used.

Figure 4.4 (a) compares the accuracy performance of Planter on Tofino and

existing solutions where Clustreams is deployed on Tofino, and Taurus and Ho-

munculous are implemented on Taurus backend using the modified ASIC (re-

sults from [195, 197]). Planter achieves a higher F1 score (84.88%) than Clus-

treams (35.4%), Taurus (71.1%) and Homunculus (83.1%), and similar to server
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tion, for (a) tiny model, (b) maximum (Max.) SwitchTree, and (c) maximum
(Max.) Planter. Finance dataset is used.

performance. Compared with IIsy on Tofino, for the same model setup, Planter

achieves lower memory consumption as shown in Figure 4.4 (b) & (c). Planter

reduces the number of table entries in all types of tables for random forest (RF)

and prevents table entry explosion by turning multiplications into additions for

naı̈ve Bayes (NB).

Figures 4.5 (a)-(c) compare Planter with Clustreams using k-Means and

SwitchTree using decision tree. Clustreams has limited scaling capability, as table

entries may explode when seeking better accuracy, compared with Planter’s ac-

curate and more resource efficient solution for larger models. Similarly, Planter

maintains a constant number of stages for tree models, compared with the in-

creasing number of stages in SwitchTree. Planter demonstrates better scalabil-

ity in commodity hardware by parallelising the inference processing within a

pipeline to avoid exceeding the stage limitation as model size scales up.

Figures 4.6 (a)-(c) compare the resource consumption and scalability of

Planter’s ensemble tree model (RFEB) with SwitchTree (also pForest) RFDM using

ditrect-mapping [119, 33] under the finance use case. When using a tiny model
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size (3 trees, depth of 2), as shown in Figure 4.6 (a), Planter requires only 3 stages

and 0.82% memory, compared with 11 stages and 2.4% memory in SwitchTree.

The maximum size of a SwitchTree RF model fitting on Tofino, as shown in Fig-

ure 4.6 (b), is again 3 trees and a depth of 2, but using 12 features. For the same

model, Planter requires 1.5% more memory but uses only 4 stages, 7 stages less

than SwitchTree. Figure 4.6 (c) shows combinations of hyperparameters settings

of Planter, all too big for SwitchTree.

Combined, Figures 4.4 to 4.6 demonstrate that Planter outperforms prior

works in both accuracy and resource utilisation. This is due to the optimised

mapping methods introduced in Chapter 3.

4.4.3 Scalability Performance

Scalability and Relative Accuracy: I examine whether Planter can perform ef-

fective algorithm mapping with various hyperparameters and adapt to differ-

ent resource constraints. Specifically, this evaluation studies the effect of ac-

tion data bits (action field’s width, which can control quantisation accuracy) and

model depth on models’ relative accuracy, comparing the switch’s output with

Sklearn’s result on a server.

Figure 4.7 shows the switch accuracy relative to server accuracy. For lookup-

based models in Figure 4.7 (a), the relative accuracy increases as the number of

action data bits increases (more accurate intermediate results are stored). Among

solutions, Planter has a negligible accuracy loss with just 4 action data bits re-

quirements, which can save 40% memory in practice (more action data bits

means higher memory consumption). In Figure 4.7 (b), compared to server-

based models with the same model size, the accuracy of Planter’s models re-
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Figure 4.7: The ratio of accuracy (ACC), data plane model relative to the server.
KMLB & SVM refers to IIsy [218]; DTDM & RFDM refers to SwitchTree [119] &
pForest [33]; KMEB refers to Clustreams [66]. P- refers to Planter proposed or
upgraded model.

mains stable as model depth changes. It indicates that Planter’s solutions can

consistently achieve high mapping accuracy across a range of model sizes, effec-

tively adapting to different resource constraints. Compared with KMEB (Clus-

treams [66]) and DT/RFDM (SwitchTree/pForest [119, 33]) that can easily lead to

table entry or stage explosion when the model depth grows, Planter’s solutions

improve the mapping precision when under identical memory consumption.

Resources Scalability: Both training & mapping configurations (model depth,

action data bits, and number of trees) and use case inputs (number of features

and unique feature values) influence the applicability and scalability of Planter’s

in-network ML models. The resource scalability of each model is evaluated in

two dimensions: the number of table entries and the number of pipeline stages.

Table entries indicate the potential memory requirements from the switch, and

the number of stages indicates remaining M/A stages for model growth and

non-parallel functionality.

Figures 4.8 (a) & (b) show that as a model’s depth increases, more table entries

are required in all encode-based models and direct-mapping tree-based mod-
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Figure 4.9: Memory and stage scaling with mapping setups (action data bits)
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source scalability with model parameters. Model name references are same as
Figure 4.7.

els. Among them, direct-mapping solutions have a comparatively slower incre-

ment in table entries. Encode-based tree models are more stable in terms of stage

consumption. Figures 4.8 (c) & (d) show that as the number of trees increases,

direct-mapping tree models require 8 more stages than encode-based tree mod-

els, except in cases of excessive table entries. In Figures 4.8 (e) & (f), the feature

range, which is the number of unique feature values per feature, only influences

lookup-based models’ stage and memory consumption. Figures 4.9 (a) & (b)

show that except for direct-mapping tree-based models, models consume more
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table entries as the number of features increases. In terms of stage consumption,

only lookup-based models have a strong correlation to the number of features.

Figures 4.9 (c) & (d) show that the number of action data bits does not influ-

ence the required number of table entries and the required number of stages.

Note that the evaluated models are only those where action bits are a parameter.

However, the number of used action data bits has an impact on calculation &

inference errors as well as memory consumption. Figure 4.10 shows the relative

error of a result (e.g., hyperplane equation in SVM) calculated on programmable

network devices (e.g. Tofino switch), compared with the same equation calcu-

lated on a server. While this error is small (less than 0.001%), the more important

result is the misclassification due to calculation error: zero for SVM and k-Means,

and 0.00003% for naı̈ve Bayes when using action width of 16 bit. This error is due

to extremely low probabilities, and can be eliminated by encoding the results

of naı̈ve Bayes calculations, rather than normalising values. As shown in Fig-

ure 4.10, increasing the number of bits in an action has a minor effect on overall

memory consumption, but can significantly reduce calculation errors.
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Figure 4.10: Calculation error in SVM, Bayes and K-means.

Some insights based on this evaluation are:

1. The scalability of encode-based models is mostly affected by the models’

parameters (e.g., number of trees/model depth) and less by the use case
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(e.g., range/number of features).

2. Lookup-based models’ resources change with use case properties (e.g.,

range/number of features), and typically not with model parameters.

3. Direct-mapping models’ scalability is model-dependent. They are usually

bounded by stages, and less by memory.

This evaluation also illustrates Planter’s widely supported model types and their

characters. This diversity can make Planter adaptable to a wide range of use

cases. More details related to the use cases are discussed in Chapters 5 and 7.

4.4.4 General System Performance

In terms of system performance, the throughput evaluation of different models

is shown under the attack detection use case (UNSW), which is a volumetric use

case. Latency is shown using price movement prediction use case (Jane Street

Market Prediction), which is latency sensitive.
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Figure 4.11: Throughput of ML algorithms for attack detection on Tofino (in
Tbps) and P4Pi (in Mbps). DTDM and RFDM refers to SwitchTree [119] & pFor-
est [33]; KMLB & SVM refers to IIsy [218]; KMEB refers to Clustreams [66], NN
refers to N3IC [184].

Throughput: Throughput tests record the throughput of each in-network ML

algorithm on a Tofino switch and P4Pi, as shown in Figure 4.11. The baseline
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throughput of basic forwarding is 6.4Tbps on Tofino and 94Mbps on P4Pi. On a

Tofino switch, full 6.4Tbps is achieved for all feasible models (Table 4.6 and 4.7).

On P4Pi, which essentially runs a software switch on a CPU, the results vary

between models. Seven of the models achieve more than 80% of the baseline

throughput. Ensemble models (RFEB, RFDM, and XGB) and NN have degraded

throughput on P4Pi, due to their increased use of resources (e.g., pipeline stages,

table entries, logical operations, and especially registers). The throughput of in-

network ML on other targets can be found in Section 4.4.5.
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Figure 4.12: The relative latency (R-Latency) on Tofino in the financial predic-
tion use case, measured for standalone ML, ML combined with switch.p4, and
standalone switch.p4.

Latency: Latency tests are conducted with finance use cases (Jane Street Mar-

ket Prediction dataset) where Planter’s models can achieve sub-microsecond la-

tency. In compliance with Intel NDA, I report the relative latency in Figure 4.12.

The baseline is the latency of switch.p4, an L2/L3 reference switch with 10 net-

work functions. Due to resources occupied by the reference switch, some models

failed to be deployed on Tofino when coexisting with these network functions,

which shows zero in the figure. For those not running out of resources, when

only the ML models are deployed without additional functions, the latency in

most models is less than 22% of switch.p4. When the ML models are combined

with switch.p4, there is an overhead of less than 4.7% for all feasible algorithms.

Compared with previous works, Planter’s mappings require less logic for sim-
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ilar models and are more compatible with other switch functions in resource-

constrained targets. The latency of in-network ML on other targets can be found

in Section 4.4.5.

4.4.5 System Performance on Different Targets

The system performance of two sample in-network ML algorithms, DTEB and

RFEB, is evaluated on different targets1. As illustrated in Figure 4.13, hardware

targets, such as Tofino and FPGA, achieve line rate throughput (6.4Tbps and

100Gbps, correspondingly). In contrast, software switches (BMv2 or T4P4S), run-

ning on the ARM cores of P4Pi and DPU, reach a throughput in the range of tens

to hundreds of Mbps. Similarly, hardware targets achieve microsecond-scale la-

tency, whereas software targets achieve sub-millisecond latency. Furthermore,

on software targets the complexity of the model impacts system performance;

the more complex random forest algorithm has lower throughput and higher la-

tency on these targets. The model complexity does not have a notable impact on

the performance of hardware targets. To provide more information about each

of the targets:

FPGA. Planter’s FPGA support is evaluated using AMD Alveo U280. Vitis Net-

working P4 is used to compile the generated P4 code to an IP block with standard

AXI interfaces for the OpenNIC shell. Taking DTEB and RFEB (encode-based) as

examples, the baseline latency through a forwarding-only program is about a mi-

crosecond. The latency added by a decision tree model is 170 nanoseconds, and

random forest latency is approximately 320 nanoseconds, aligned with compiler

prediction. Both In-network ML models achieve 100Gbps, full line rate.

1Thank Liam Perreault for helping in configuring Planter on FPGA, and Mingyuan Zang for
helping in evaluating Planter on P4Pi.
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Figure 4.13: Throughput and latency of encode-based decision tree (DTEB) and
random forest (RFEB) on different target devices. -B refers to BMv2 and -T refers
to T4P4S.

DPU. Planter currently supports in-network ML on NVIDIA BlueField-2 DPU

using BMv2 running on its ARM cores. P4C is used to compile the P4 code with

v1model architecture to a BMv2 software switch. Under this setup, compared

to the baseline of simple forwarding, DTEB introduces an additional latency of

approximately 43 µs, and RFEB’s latency is approximately 487 µs. In terms of

throughput, using BMv2 performance configuration [47], decision tree can reach

about 360 Mbps and random forest is approximately 131 Mbps.2

P4Pi-T4P4S. T4P4S [205] is an open-source compiler that generates a target-

agnostic software switch using Data Plane Development Kit (DPDK). In this sce-

nario, T4P4S is running on top of P4Pi [115]. Taking the same DTEB and RFEB

models, the baseline latency is around 1 ms with basic forwarding functions.

When DTEB and RFEB are enabled, the latency increases to 2 ms and 2.3 ms, cor-

respondingly. The baseline switch throughput is 100 Mbps. When DTEB and

RFEB are deployed, the throughput decreases to 78.7 Mbps and 68.8 Mbps.

P4Pi-BMv2. P4Pi is also evaluated using v1model over BMv2 software switch,

2NVIDIA’s P4 compiler for DPU, currently not generally available, will enable higher perfor-
mance.
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using BMv2 performance configuration [47] and the same testbed as P4Pi-T4P4s.

The DTEB and RFEB models deployed on BMv2 achieve a throughput of 80 Mbps

and 60 Mbps. The latency results are 2.1 ms and 2.5 ms when DTEB and RFEB are

deployed, with a baseline latency of 1.1 ms.

4.4.6 Framework Performance

Framework Execution Time: I measure the time required to load a dataset, train

a model, convert the trained model, test table entries, compile the mapped model

to a target, and load the generated tables. Among these, I focus on training and

conversion time, the two time-consuming components in Planter’s operation.

Based on the results (shown in Figure 4.14), for small models (Figure 4.4) using

UNSW dataset under the Anomaly Detection use case, most of the small models’

training time (except SVM, NN, and AE) and all of the models’ conversion time

are less than 10s, which shows Planter can rapidly prototype in-network ML.
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Figure 4.14: Algorithms’ train & convert time (UNSW dataset).

User Experience: The efficiency of rapid prototyping was explored by checking

the implementation time of an in-network ML inference prototype by two un-

dergraduate students with no P4 knowledge and two graduates with basic P4
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knowledge3. All test users successfully compiled and configured an in-network

ML prototype on a programmable target within 10 minutes. The graduates es-

timated it would have taken them 2-3 months to study ML prerequisites and

debug the code without Planter. These results demonstrate the clear advantage

of rapid prototyping for users of all skill levels.

4.5 Discussion

ML Performance. ML models mapped by Planter provide in-network ML accu-

racy similar to running the same model on a host, as the evaluation shows. How-

ever, model size and inference performance present a trade-off. Sometimes, a

large model can achieve higher accuracy for additional switch resources. Planter

can handle this trade-off and find the optimal mapping setup using the frame-

work frontend to fit on a switch and achieve high accuracy. Additionally, ML

performance may vary across different hardware deployments depending on the

low-level hardware features and restrictions.

Neural Network (NN) vs Traditional Models. In previous sections, NN is

shown to be supported in Planter based on prior work [184]. Evaluation results

indicate that NN is feasible for certain model sizes and hardware targets. For

smaller NN sizes, there is a decrease in accuracy/F1 performance. While NN

is extremely powerful, especially in training, research to date has shown that

PISA-based ASIC is less suitable for NN (e.g. [169]), and this work does not chal-

lenge this claim. Instead, Planter shows that a range of other inference models

are feasible and powerful.

3Approved by an institutional compliance team (institutional review board equivalent).
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Pipeline Stages. The number of stages required by a model relates both to the

type of mapped model and its size. For the UNSW dataset, at least 2 stages are

consumed, and some models do not fit. Planter’s encode-based solutions outper-

form previous direct-mapping solutions. Planter shows that stages can be shared

with standard switch functionality. Some designs can be hand-crafted to reduce

stages, e.g., where network and ML functions have similarities. The experience

is that 2-3 stages can be saved through manual optimisation, by improving the

decision logic and forcing stage allocation.

Agnostic Targets. Planter is not target-specific. It currently supports a range

of P4 targets, such as Intel Tofino and Tofino 2, BMv2, P4Pi [115] using either

T4P4S over DPDK or BMv2, Alevo U280 FPGA over OpenNIC Shell [216], and

all P4 architectures required by these targets. Planter is open to new targets and

will continuously expand its support for emerging targets, keeping in-network

ML vibrant. Owing to the framework’s modular design, adding more targets to

Planter is straightforward, primarily involving the inclusion of scripts pertain-

ing to the target’s compiler and testing environment. Detailed guidance can be

found in the Planter repository [238].

Support & Use Cases. While this chapter mainly focuses on the implementation

of algorithm mappings, Planter provides one-click support for many emerging

use cases. Early users of Planter have explored, for example, smart IoT gate-

ways (e.g., P4Pir [228, 225] and FLIP4 [227]), anomaly detection (e.g., IIsy [243]),

e-commerce bot detection (e.g., INCS [84]), financial market prediction (e.g.,

LOBIN [91]), and load balancing (e.g., QCMP [241]). The implementation and

evaluation of these use cases are discussed in Chapters 5 and 7. I believe that the

wide adoption of in-network ML requires a suitable framework. Planter aims

to be to in-network ML what CUDA was to GPUs [143]: the enabler for wide
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adoption on programmable targets, leading to a proliferation of use cases.

Benefits to Community. Planter serves as a rapid prototyping solution for in-

network ML development. It empowers researchers and developers in the com-

munity to rapidly validate design ideas, conduct benchmark experiments, and

evaluate the performance of the design. Apart from its primary function as a pro-

totyping tool, Planter also serves as an educational resource, helping students

understand concepts of in-network computing and gain hands-on experience.

Given that in-network computing is a recent research area, Planter can play a vi-

tal role in expediting tests, validation, and standardisation process. Furthermore,

it encourages diverse exploration in network and interdisciplinary domains, ac-

celerating research and development.

4.6 Summary

In this chapter, I introduced Planter, a modular framework for rapid implemen-

tation of in-network ML algorithms. Planter’s modular design enables the inte-

gration of new ML models, architectures, targets, and use cases (§4.2). Planter

implements a wide range of in-network ML algorithms proposed and discussed

in Chapter 3 (§4.3). The evaluation shows that Planter accurately maps trained

models to a switch, can achieve high inference accuracy and line rate throughput,

and can be integrated with switch.p4 without consuming additional stages (§4.4).

The evaluation indicates that the new mappings based on proposed methodolo-

gies in Chapter 3 can scale better than multiple previous works. As an open-

source platform, Planter is the enabler for in-network ML research, and is avail-

able at [238].
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CHAPTER 5

HYBRID IN-NETWORK MACHINE LEARNING

Offloading ML tasks becomes more practical and promising using proposed

mapping methodologies and the rapid prototyping framework introduced in

previous chapters. However, as shown in Chapter 4, network devices are

resource-constrained, and lack support for some large in-network ML models,

which limits the overall inference performance of the in-network ML system. In

this chapter, I present IIsy, In-network Inference made easy, building upon an

FPGA-based early work in [218]. This chapter addresses aspects of in-network

ML that were not previously discussed, such as feature extraction and model

retraining. It then introduces a hybrid deployment ML model that can achieve

close to optimum ML performance while still benefiting from the performance of

in-network computing. The chapter is organised as follows: it first describes the

hybrid system (§5.2-5.3), before moving to address the differences in mapping

IIsy models (in-network ML models used for hybrid deployment) to switches

(§5.4). It expands on feature extraction (§5.5) and model updates (§5.6), which

are beyond the support of Planter. Finally, this section presents the implementa-

tion (§5.7) and evaluation of IIsy (§5.8), showing its ML and system performance.

The content of this chapter was published in [244].

5.1 Motivation

Using in-network ML offers system performance and deployment location ben-

efits, such as the 3-Ls (location, latency, and load) introduced in §2.4. How-

ever, these benefits would only be made possible if the inference performance

of in-network ML meets the service requirements. The limited resources on pro-
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grammable switches impose constraints on the size of models that can be de-

ployed [245, 239], which affects the accuracy of its classification services. Al-

though the mapping solutions proposed in Chapter 3 scale in-network model

size beyond previous works, their scalability remains limited compared to the

large models running on server-based setups. However, the performance de-

mands for practical services, such as classification accuracy, are usually non-

negotiable. This means that an in-network ML system with high classification

performance is required. While updating hardware with more resources can

support larger models for improved ML accuracy, this approach introduces ad-

ditional costs, contradicting the original intent of in-network ML. Therefore, this

section aims to design an inference system with high accuracy using restricted-

size in-network ML models. Such a system, ensuring reliable performance,

would allow in-network ML to meet diverse service requirements of use cases,

providing tangible benefits to applications.

5.2 Hybrid Deployment

In many in-network ML models, such as random forest and XGBoost, the ML

model can provide a classification with a corresponding confidence level – the

probability that the classification is correct [224]. This allows IIsy to adopt the

concept of a hybrid ML deployment [204], by implementing a small in-network

model (e.g., by limiting the number of base models in an ensemble or using a

subset of features [198]), and running a large ML model at the backend.

The small model within the network is necessarily a model where the training

process can provide confidence scores for classification outputs, e.g. tree-based

ensembles. The large model at the backend operates independently from the
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small model, and they do not need to be of the same type. The selection of the

large model at the end-point primarily considers the processing ability of the

backend system, as well as the ML performance of the large model. Advanced

models, such as deep neural networks (DNNs) [83], and sophisticated training

techniques, like adversarial training [69], can be utilised.

To cope with the lower ML performance of a small in-network ML model,

classifications by the small model are considered valid only if their correspond-

ing confidence is above a given (high) threshold. Invalid classifications by the

small in-network ML model (i.e., confidence below the threshold) are forwarded

for re-classification by the large ML model deployed at the backend. Confidence

is a property of the ML model. The output confidence value is fixed for a given

input. Using a forest model as an example, the output confidence can be the

mean of the confidence of the selected output label for all the trees in the forest.

Previous pure ML works [204] have shown that most of the queries in a

given dataset can be classified by a small ML model with a high confidence

level. Hence, a hybrid ML deployment reduces both the classification latency

and the load on the backend servers (by forwarding only “hard-to-inference”

queries for re-classification), as compared to a monolithic ML model deployment

at the backend, where all queries are processed by the end-point. In §5.8, I val-

idate these assumptions and demonstrate the benefits using two use cases from

different domains, cyber-security, and finance.
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5.3 IIsy Architecture

The architecture of IIsy, shown in Figure 5.1, has four components: ML training,

a mapping tool from a trained model to a target network device, a data plane

implementation on a hardware target, and a control plane component for popu-

lating table entries. Additionally, the figure shows the integration with a server

backend, for hybrid deployments.
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Figure 5.1: The high-level architecture of IIsy.

IIsy uses host-based ML training based on standard ML frameworks and al-

lows for model updates over time. For the small in-network ML model, as shown

in Figure 5.1, IIsy modifies Planter as the mapping tool (§5.4). It takes the output

of the ML framework, the trained model, and maps it to a switch-ASIC target.

The tool generates two components: an implementation of the network switch

data plane (P4 based), and the table entries loaded by the control plane. The

data plane components combine standard network switch functionality (pro-

vided by the user), a more practical feature extraction process from IIsy, and the

in-network ML code generated by the modified mapping tool. The control plane

component is responsible for the configurations and updates of the network de-

vice. Beyond Planter, this control plane also supports runtime updates on the
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deployed classification model. As such, it combines the standard user-defined

control plane and the table configurations generated by the mapping tool and

required for in-network ML. IIsy’s support for hybrid deployment means that an

additional data plane component is needed, which considers the confidence level

of a classified transaction, and accordingly decides if to forward the transaction

to its destination (high confidence) or route it to the backend for classification

by the large model (low confidence). The confidence threshold is configurable,

and confidence levels are programmed through the control plane. The type of

the model on the switch and at the backend do not need to be identical, e.g.,

XGBoost on the switch and a neural network at the backend.

5.4 Mapping Models to Switches

The implementation challenges of in-network ML models have been mostly mit-

igated by the algorithm mappings and framework introduced in the previous

chapters, which is the basis of IIsy’s algorithm mapping. For the small in-

network model on programmable network devices, IIsy uses ensemble tree mod-

els. Ensemble methods improve ML prediction results by combining multiple

learning models [253], and most importantly are also able to output the confi-

dence of each classification decision for hybrid deployment. The decision con-

fidence of an ensemble model is typically calculated using one of the following

two methods: mean approach, which involves averaging the confidence scores

of selected output labels across all models, or percentage approach, which repre-

sents the confidence as the proportion of models with the same output label. In

this chapter, IIsy applies the mean approach.

IIsy considers two tree-based types of ensemble methods: bagging (random
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Figure 5.2: The variation of the ensemble tree model used in IIsy (b) compared
to the standard version of algorithm mapping in Figure 3.8 using Planter (a).

forest) and boosting (XGBoost). Based on the evaluation result in §4.4.2, IIsy

applies encode-based mapping methodology to map them. Encode-based en-

semble tree models require three logical pipeline stages: the first stage is used

for features lookup; the second stage conducts the independent votes lookup

of all the models in parallel; and the third stage makes a classification decision

based on the votes of the ensemble, as shown in Figure 5.2 (a). While this pro-

cess provides the classification result, to get the confidence of each classification

decision in-network for hybrid deployment, IIsy changes the mapping detail. As

shown in Figure 5.2 (b), to include confidence output, the decision table will map

the vote of all trees into not only a class but also a confidence level. This value

can be stored together with the class or using a separate action data field. Since

action data has a small impact on memory, as shown in Figure 4.10 in §4.4.3,

IIsy applies two fields to store them. The action in the final logic for the small

in-network ML model is not fixed and is usually tailored based on the use case.

One typical option is to forward all the low-confidence traffic to the complex

model at the back end. More detailed final logic configurations for use cases can

be found in §5.8.2.
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5.5 Feature Extraction

Network devices are designed to extract headers from packets. However, the

research community has already gone beyond packet headers for applications

ranging from telemetry [110] to in-network classification [33]. While previous

chapters have incorporated certain feature extraction, their primary emphasis

lies in algorithmic mapping and the implementation of in-network ML models.

The feature extraction supported therein is limited to fundamental per-packet

features. In this section, I further discuss how features can be extracted from data

on different levels of granularity. The implementation and evaluation of feature

extraction processes on specific use cases are discussed later in §5.8.3-5.8.5.

Packet level features. Extracting packet-level features is native to network de-

vices. Packet header extraction is done in the parser, and features are stateless.

Such features include, for example, protocol type or source and destination port

number. Packet level features also refer to features that describe the packet, such

as packet size, switch source port, or timestamp.

Flow level features. Flow-level features, such as flow size and flow duration, are

stateful. Information is collected and stored across multiple packets [188]. IIsy

supports two types of flow-level features: counted features (e.g., flow size, pack-

ets count), and time-related features (e.g., flow’s start time, inter-packet gap).

Aggregate level features. Aggregate level features consider a group of flows, the

aggregation of traffic (e.g., from/to port X) or the network as a whole. Examples

of features useful for ML purposes include traffic volume from a group of sub-

nets, inter-arrival time toward a specific application or a histogram of source and

destination ports [174]. Implementing aggregate-level features is mostly similar

to flow-level features, however, additional operations may be required, such as
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mapping flow identifiers to an aggregated-feature identifier.

File level features. Supporting feature extraction from files can be categorised

into two scenarios. In the first scenario, a single packet per file, all necessary

features can be found within each packet. The extraction process for this type

of file resembles that of packet-level features. It is relatively intuitive and can be

realised by parsing the header and examining the payload. The second scenario

involves files transmitted across multiple packets, which is more complex than

in the previous scenario [24]. In this case, it necessitates not only verifying the

packet sequence but also identifying the files’ start and end points. Additionally,

if the packet size exceeds the capacity of the programmable data plane’s bus, it

may require recirculation (dependent on the target) to accommodate the packets

pertaining to the file.

5.6 Retraining and Updates

ML models often need to be retrained, e.g., due to data skew, and the resulting

classification model needs to be updated. This section considers such updates

and realises the process by only updating table entries, without changes to the

deployed program. Specifically, the generated P4 program (ensemble trees) de-

pends on a set of user definitions: the features that need to be extracted (not

necessarily used by the ML model), the type of the model, and constraints on

the model (e.g., number of trees). While retraining will result in a different

ML model, as long as the definitions above are kept the P4 program will not

change. Changes will only happen to the action field in the features tables, code-

to-classification tables, and decision table (as in Figure 3.8), which manifest as

table entries changes rather than changes to the P4 code. These can be loaded
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through table updates, a common management operation. During updating en-

tries to the table, packets may be falsely classified due to the incomplete table

entries. A shadow runtime update mechanism is designed to mitigate this effect

and is further discussed in this thesis through a case study in §7.2.1. Changes to

some hyperparameters require generating new P4 code and are not supported in

runtime. In a hybrid deployment, traffic can be directed to the backend during

updates, to avoid misclassification. Data for retraining can be collected through

sampling and using in-network telemetry [110] and will be affected by the loca-

tion of a switch (e.g., edge vs data centre).

5.7 Implementation

The IIsy’s ML algorithms are trained offline on a server [237] using established

frameworks like scikit-learn [154]. IIsy automatically maps trained classifica-

tion models to programmable network devices, and in particular to off-the-shelf

switch ASIC, for hybrid deployment. To further extend its reusability, this pro-

cess is implanted in Planter (Chapter 4) as a variation module of the in-network

ML. This IIsy variation uses a similar model training process as in Planter but

applies a modified mapping process to include confidence prediction in its out-

put to data plane code and control plane code. The switch implementation of the

mapped ML model mainly runs on Intel’s Barefoot Tofino (ASIC) in this chapter

for brevity. On Tofino, packet-level, flow and aggregate features are supported,

with a further focus on files. Data is extracted from text files, both with fixed

and unknown feature sizes (e.g., words separated by delimiters). The proto-

type supports features of up to 30 ASCII (32-bit) and 59 numerical characters (re-

stricted by pipeline hardware resources). In addition, it supports features split
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between packets and features implemented deep within the packet (§5.8.2). The

data plane and the control plane are auto-generated, using Python scripts and a

configuration file. A user defines in a configuration file design constraints, such

as the maximum number of trees, and the tool takes the output of the training

stage (pickle file) and uses it to generate both the data plane (P4 files) and the

control plane (table entries). Further information is provided in [244].

5.8 Evaluation

This section first introduces the evaluation setup (§5.8.1), two used use cases

(§5.8.2), and their feature extraction processes (§5.8.3). The evaluation starts

with the performance of small in-network ML models (§5.8.4). Then, this section

presents the limitation of model scalability and shows the benefits of a hybrid

deployment (§5.8.5). Finally, this section evaluates the inference accuracy and

system performance of hybrid deployment for both use cases (§5.8.6).

5.8.1 Testbed Setup

The training of the IIsy’s models uses Python with packet scikit-learn 0.24.1 and

XGBoost 1.3.3, running over a c4.8xlarge AWS EC2 instance with 36 vCPUs

and 60 GB RAM running Ubuntu 16.04 LTS. The system test environment uses

64×100G ports Barefoot Tofino, APS-Networks BF6064X. Four servers with 100G

NVIDIA ConnectX-5 NICs are used to send and receive traffic from the switch.

To test full throughput, I use a snake configuration, where traffic is looped from

each port to the following one, enabling traffic across all 64 ports, which is a

common practice [51]. As a baseline, I measure 6.4Tbps on the switch when
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running simple forwarding.

5.8.2 Use Cases

This evaluation is driven by two use cases: network anomaly detection using the

UNSW-NB15 dataset [140], and time-sensitive financial market prediction using

the Jane Street Market Prediction dataset [76].

I. Anomaly detection - Reducing backend resource consumption

Anomaly detection, such as intrusion detection and prevention, is typically

done at the backend and can consume significant compute or acceleration re-

sources [235]. All network traffic toward certain application servers needs to

be examined, and malicious traffic needs to be filtered. Our goal is to provide a

scalable solution, whereby normal traffic is admitted by the switch, and anomaly

traffic is either dropped in the switch or sent to the backend (in a hybrid mode).

In the hybrid mode evaluation, any traffic that is classified as anomalous or with

low confidence is sent to the backend for deeper inspection. In this manner, the

switch does not block (drop) legitimate traffic and offloads significant processing

from the backend, as most traffic is normal. The dataset used, UNSW-NB15 [140],

contains a mix of normal traffic and different types of attacks. This use case is fo-

cused on load reduction benefits, where in-network ML saves resources compared

with host-based solutions while also scaling with the network’s bandwidth.

From the ML perspective, random forest is suitable for this use case [158], as it

offers low variance in its classifications. This leads to a more predictable fraction

of the traffic that is correctly classified as normal (unless the traffic distribution
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changes dramatically – which requires retraining the model). Other ML models

are evaluated for feasibility purposes. The ML training uses 80% of the data and

the rest 20% is used for testing. The model running on the backend is using a

random forest of 200 trees (estimators) and 10,000 leaf nodes (at most), and all

the features in the dataset.

II. Financial market prediction - Reducing latency

Low latency financial transactions, such as algorithmic trading, are very sensi-

tive to latency. For top 10% financial traders, the decision latency is less than

42 microseconds [20] from a passive order to an active transaction. In algorith-

mic trading, a data feed from the stock market provides live information using

an unencrypted protocol, such as NASDAQ ITCH [142]. Typically, a large back-

end is used to provide real-time classification for all market transactions. In this

use case, the switch can identify and tag high-priority transactions, while other

transactions are sent to the backend for fine-grain classification. The tagged high-

priority and high-confidence transactions can be forwarded to a different server

for immediate execution. Moreover, tagged queries can be prioritised over ded-

icated link(s), avoiding congestion. Assigning time-sensitive high-priority and

high-confidence transactions to a special fast processing path may bring sig-

nificant financial benefits with low resource consumption. Any misclassified

high-priority transactions will simply undergo the regular classification path.

This is an example of latency benefits for time-sensitive applications, while the

change to the backend’s load is small. To demonstrate this use case, the Jane

Street Market Prediction dataset [76] is used. Each entry in the dataset contains

130 anonymised features, representing real market data, and two output values

(‘weight’ and ‘resp’) representing the trade’s return. Using these two output val-
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ues, we label the transactions by recommended actions: ‘Strong sell or buy’, and

‘Sell/Hold/Buy’. The transactions are typically a feed of individual trade in-

structions from the stock exchange. The Jane Street dataset is recent and open

information available from a trading company, presenting pre-processed trans-

actions. All incoming transactions are assumed to go through the switch, so any

classification by the switch has an additive latency of close to zero1. In this eval-

uation, for clarity, all packets with a low confidence level will be forwarded to

the backend and all packets with a high confidence level will be forwarded to

the special fast processing path.

In terms of ML performance, while I evaluate with different models, the pref-

erence for this use case is XGBoost, commonly used in financial applications as

boosting offers a controlled bias that is more suitable for identifying minorities.

The ML model in this use case is trained using 80% of the dataset and the rest 20%

is used for testing. The model running on the backend is using all 130 features,

with XGBoost of 100 trees (estimators) and a maximum depth of 8 (XGBoost trees

tend to be shallow).

5.8.3 Feature Extraction

The IIsy for the anomaly detection use case supports packet-level features (e.g.,

source and destination port, protocol, service, and ports equivalence) and flow-

level features (e.g., duration, flow size in bytes, and packets in each direction).

Flow level features sometimes improve the quality of the prediction, but cost

two stages: to hash the flow ID, and to update a register holding the value of the

feature (e.g., flow size). Choosing between the two options requires weighting

1Use of L1 switches, e.g., Cisco Nexus 3550 is a different scenario.

108



also other considerations, such as if flow ID is needed for “standard” network-

ing purposes. Our resource consumption evaluation (Table 5.1) uses source and

destination port, protocol, and service features, and the study of hybrid deploy-

ment (Table 5.3) uses in addition the feature is sm ips ports (is same source and

destination?) and the stateful feature “source bytes” (sbytes). The effect of flow-

level features on accuracy is shown in Table 5.1, where the feature “service” is

swapped with “sbytes”. As shown in the accuracy (Acc.) of “sbytes” row, the

application of this flow level feature can improve most of the average model

accuracy from 83.16% to 92.83% and reduce the standard deviation among all

models’ inference performance from 15.1 to 4.8.

The Jane Street dataset contains 130 numerical features, which I evaluate

twice: using packets containing numerical values, and in a csv format. For ease

of exploration, the csv file is reformatted as columns of eight characters, though

other IIsy implementations are not of fixed size or known delimiter location. The

features ranked most important and used are features number 42, 43, 45, 124,

and 126. Both numerical and csv format processing use these features, thereby

demonstrating feature extraction from deep within the packet (using the parser),

successfully extracting without recirculation. As financial transactions are typi-

cally a feed of individual trade instructions (§5.8.2), and the size of an entry in

the Jane Street dataset, with 130 columns, barely fits within an maximum trans-

mission unit (MTU) packet (1522B), each transaction is sent individually.

5.8.4 Performance of Small Model

Table 5.1 and Table 5.2 summarise the resource consumption of anomaly detec-

tion and financial transactions, respectively. The tables show, for each model, the
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Model SVM NB KM DT RF XGB

Tables 6 6 4 5 11 11

Memory 5.37% 9.22% 9.12 % 1.11% 1.89% 6.68%

Stages 8 8 7 2 3 4

Latency 30.37% 31.11% 23.33% 28.52% 35.56% 35.93%

Accuracy 92.14% 87.92% 52.41% 88.69% 88.91% 88.88%

Acc. sbytes 91.78% 86.93% 87.36% 97.04% 97.05% 96.83%

Table 5.1: Anomaly Detection - Latency on Tofino relative to switch.p4 reference
program. The row named accuracy (Acc.) sbytes shows the IIsy performance of
using flow-level features “sbytes”.

Model SVM NB KM DT RF XGB

Tables 6 6 4 5 11 11

Memory 1.15% 1.15% 1.04% 1.11% 2.00% 6.68%

Stages 8 7 6 2 3 3

Latency 30.37% 23.33% 30.00% 27.78% 34.81% 34.81%

Accuracy 72.08% 71.92% 70.35% 72.43% 72.44% 72.47%

Table 5.2: Financial Transactions - Latency on Tofino relative to switch.p4 refer-
ence program.

size of the model (not maximum size) that fits within Tofino’s ingress pipeline us-

ing the features noted above. The ensemble models use a small model of 6 trees

with a depth of 4. In both tables, the memory indicates the proportion of overall

utilisation, while the latency is assessed relative to Tofino’s switch.p4 reference

design. As the results show, the memory requirements are low in comparison

with switch.p4. For anomaly detection, all the models consume less than 9.3% of

the memory, with decision tree (DT) and random forest (RF) requiring less than

1.9%. In the financial use case, all the models require less than 6.7% of memory.

This result shows that small size in-network ML models can fit in commodity

programmable network devices well.
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Figure 5.3: Ensemble scaling of table entries (a,b) and maximum number of trees
(c,d) with tree depth and features. f refers to the number of used features.

5.8.5 Model Scalability

The size of a model fitting within a switch depends on the type of model, model

hyperparameters, mapping configurations, the dataset, and its features. The

influence of these parameters on the table size and consumption of pipeline

stages for each in-network ML model is illustrated in Figures 4.8-4.9 in Chap-

ter 4. This section presents a more detailed scalability result of in-network ML

models. Specifically, Figures 5.3 (a) & (b) show how memory requirements of a

decision tree scale with the number of features and the depth of the tree, using

exact match or ternary feature tables. In the finance use case, all the features are
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similar, and adding features increases memory requirements in a roughly con-

sistent manner. In the anomaly detection use case, features vary significantly in

their memory requirement. For example, the protocol type requires significantly

fewer entries than the source or destination port. Consequently, the anomaly

detection use case requires less memory than the finance use case for the same

model size. As Figures 5.3 (c) & (d) show, using up to 6 features, one can fit up to

20 trees. Increasing tree depth means that fewer trees can fit within the switch,

due to the size of the decision table.
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Figure 5.4: The maximum number of features that can fit on a switch in the
financial transactions use case.

To explore the maximum number of features that can be supported, four

types of implementations are evaluated: in-network ML using numerical fea-

tures, in-network ML using ASCII (from csv) features, in-network ML inte-

grated with switch.p4 and using numerical features, and in-network ML inte-

grated with switch.p4 and using ASCII features. This is applied to the financial

use case, supporting both types of features. Figure 5.4 shows the maximum num-

ber of features feasible under the four variations. Tree-based models can fit more

features compared to classic models due to stage sharing. For example, decision

tree and random forest can fit up to 59 numerical features or 30 ASCII features

(due to PHV size), while XGBoost fits 55 numerical features and 30 ASCII fea-

tures. Classical models support 9-10 numerical or ASCII features and are limited
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by the number of stages required for logical operations. The integration with

switch.p4 limits the resources available for feature tables, leading to 12-18 fea-

tures allowed for tree-based models. From this result, using the maximum num-

ber of supported features as an example, we can see that even though in-network

ML can scale, it is still small compared to the large mode on the server (almost

unlimited number of features), and at a cost of high resource consumption in the

data plane.

5.8.6 Hybrid Performance

This section explores IIsy’s ML performance, with a focus on ensemble models in

a hybrid deployment. Although SVM and NB achieve an accuracy of 0.88–0.92,

this is as the anomaly detection dataset is biased, with most of the traffic benign

(which has a macro average F1 score of 0.48–0.51). Using ensemble tree models,

I correctly identify anomalies. The baseline for ML performance comparison is

the full ensemble model running on backend servers. I implement on the switch

a small model (Table 5.3), that classifies a subset of the traffic, and forwards to

the backend all low-confidence or anomalous traffic. A confidence level is set in

the switch to determine the threshold for on-switch classification.

Table 5.3 explores the effect of ensemble size on ML performance, showing

both native switch deployment and hybrid deployment. The results are com-

pared to fully-grown ensemble models running on a backend (§5.8.2). As the

table shows, the size of a model has a limited effect on its ML performance (ex-

cept for small RF in anomaly detection), and negligible effect in a hybrid deploy-

ment. Furthermore, the results of the hybrid deployment are almost identical

to the baseline, showing that a hybrid deployment using a small model on the
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Anomaly Detection, Random Forest, confidence threshold 0.7

Small Medium Large Baseline

Features 4 5 6 25

Trees 6 10 14 200

Max Depth 4 5 6 —

Accuracy 97.05 97.17 97.78 99.51

Precision 98.06 98.12 98.60 99.67

Recall 88.55 89.04 91.36 99.75

F1 score 92.60 92.94 94.58 98.88

Hybrid Accuracy 98.58 98.94 99.31 —

Hybrid F1 96.64 97.53 98.41 —

Financial Market Prediction, XGBoost, confidence threshold 0.7

Features 4 5 6 130

Trees 6 10 14 200

Max Depth 4 5 6 –

Accuracy 72.48 72.65 73.73 77.34

Precision 68.48 68.76 70.05 74.43

Recall 66.51 65.69 68.09 72.76

F1 score 67.16 65.51 68.78 73.43

Hybrid Accuracy 77.31 77.30 77.26 —

Hybrid F1 73.41 73.43 73.40 —

Table 5.3: Scalability and ML performance of ensemble models.

switch allows for high ML performance and little resources consumption.

Figure 5.5 (a, c, e) shows the hybrid deployment in the anomaly detection use

case using random forest. The evaluation includes the accuracy of the switch

and server, the fraction of traffic offloaded by the switch (switch fraction), and

the corresponding misclassification rate, as a function of the switch classification

confidence threshold. The baseline result is a misclassification rate of 0.49% and
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Figure 5.5: Anomaly Detection (Random Forest) and Financial Market Prediction
(XGBoost) in a hybrid deployment - accuracy, error rate, and fraction of traffic
handled by the switch.

an F1 score of 0.9888. In comparison, with a confidence threshold of 0.7, meaning

only traffic with classification confidence lower than 0.7 will be forwarded to the

backend, 71.7% of the traffic is handled by the switch, achieving a misclassifica-

tion rate of 1.35% and F1 score of 0.975. Meanwhile, the inference performance

of this hybrid system improves as the confidence threshold increases, but the
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Figure 5.6: Anomaly Detection (Random Forest) and Financial Market Prediction
(XGBoost) in a hybrid deployment - throughput and latency

fraction of traffic handled by the switch decreases. For the same scenario, Fig-

ure 5.6 (a, c) shows the throughput and latency of hybrid deployment, where

the throughput follows the fraction of offloaded while latency is the opposite.

Switch’s and server’s performance match the results in §4.4.4, and the backend

uses 100 servers.

Figure 5.5 (b, d, f) presents the effect of confidence threshold on the frac-

tion of traffic offloaded by the switch and ML performance of financial market

prediction. Figure 5.5 (b) shows the error rate for classifications done by the

switch compared with the error rate for the same transactions if done by the

host. As the graph shows, transactions that have low confidence (below 0.8) on

the switch, are less likely to be misclassified by the full-grown model running

on the server. In fact, starting 0.8 confidence threshold (where 36.01% of deci-
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sions are being served by the switch model) the error rate difference between

the server and the switch is very small, and some traders may even find that the

error difference of 0.7 is still small enough to provide higher transactions rate

for 50.07% of the transactions. For the same use case, Figure 5.5 (d) shows that

the baseline achieves an error rate of 0.231. In comparison, the hybrid model

achieves an error rate of 0.271 with a confidence threshold of 0.5. Increasing the

confidence level to 0.7 reduces the error rate to 0.236. However, there is a trade-

off here, shown in Figure 5.5 (f): with a confidence threshold of 0.6, 72.91% of

transactions are classified by the switch, whereas at 0.7 confidence, 50.07% of the

transactions are classified by the switch. Figure 5.6 (b, d) shows the throughput

and latency of hybrid deployment in financial market prediction. This use case

is under the same setup as in anomaly detection. As shown in these figures, the

trend of throughput and latency versus confidence threshold in financial market

prediction is similar to that in anomaly detection. When confidence threshold is

0.7, the hybrid deployment can reduce the median latency by 50% and offload

more than 50% load from backend servers to the switch.

5.9 Discussion

Scope. This chapter does not focus on the methodology of mapping trained ML

models to network devices (covered in Chapter 3). This chapter does not seek

to improve the quality of training ML models, nor to contribute to a specific

use case. Applying the methodology to certain applications, such as congestion

control, is beyond the scope of the chapter. My choice of ensemble models is pri-

marily as they provide confidence level and have the best results for the example

use cases.
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Benefits. A lesson of this chapter is that despite resource constraints, network

switches can serve as important classification components in hybrid deploy-

ments. Saving microseconds (or more) of latency in time-sensitive applications

and reducing the load on backend servers by tens of percent, without adding

new hardware to the infrastructure. While classification cannot be added to a

fully utilised switch, the results show that the resource overheads of in-network

ML classification are minimal.

Model Update. To address data drift and the dynamic network environment,

supported models can be updated while ensuring uninterrupted normal traffic

flow through the control plane. We further address the effect of ML model up-

dates in §7.2.1 [226].

Hybrid Deployment. In hybrid classification scenarios, different settings can be

used to determine which packets should be forwarded to the backend for ad-

ditional processing. One intuitive choice is to consider only confidence level,

as applied in the financial market prediction use case, achieving high accuracy

across all labels. Alternatively, there are other options, such as forwarding only

the traffic with low confidence under a specific class. This approach is used in

the anomaly detection use case, where the focus is on identifying and mitigating

attacks. In this case, only packets classified as normal with low confidence are

subjected to further scrutiny, while all packets labelled malicious are dropped

as a precaution. The specific setting can be adjusted based on use case require-

ments.
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5.10 Summary

This chapter introduced a hybrid in-network ML system used for in-network

classification, which enables similar inference performance as a server-based

large model while benefiting from the system performance of the small in-

network model (§5.2). In the hybrid in-network ML system, a large ML algo-

rithm is deployed at the backend to assist the small ensemble tree model on

programmable network devices (§5.3). In the small in-network ML model, a

confidence level is employed to determine whether assistance from the large ML

model at the backend is needed (§5.4). Meanwhile, to enhance the applicability

of in-network ML systems in practical scenarios, this chapter also supports com-

plex feature extraction (§5.5) and runtime model update (§5.6) mechanism for

the small in-network model, beyond algorithm mappings and implementation

in previous chapters. IIsy is implemented on Tofino (§5.7) and evaluated on two

use cases (§5.8). Evaluation results show that IIsy reduces the load on the back-

end, and achieves high throughput, low latency, and near-optimal classification

results while coexisting with standard switch functionality. These performance

benefits make IIsy an important step toward the practical use of in-network ML.
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CHAPTER 6

DISTRIBUTED IN-NETWORK COMPUTING

In the previous chapter, I demonstrated that the hybrid deployment system can

assist in-network ML to provide services with high inference and system per-

formance. While hybrid in-network ML is promising and practical, its ML per-

formance can still be affected by the size of the small in-network model. IIsy

did not address the scalability of these models. Even though Planter in Chap-

ter 4 can generate efficient mappings, in-network ML still faces constraints on

the size of each model based on the resources of programmable network de-

vices. In this chapter, I aim to overcome this limitation, and further scale in-

network ML algorithms by realising a distributed in-network computing (DINC)

framework. DINC disaggregates a large in-network computing program into

segments and deploys them on multiple network devices in a distributed man-

ner (§6.3-6.4). Its planner supports any-to-any routing and can distribute and

deploy program segments across network devices while providing full & correct

functionality (§6.5). Information sharing between segments or nodes is transpar-

ent to users (§6.6). To streamline the process, DINC is designed to be a scalable,

flexible, and easy-to-deploy framework (§6.7). The introduction of DINC allows

the direct deployment of large-scale computing (including in-network ML) algo-

rithms on programmable network devices (§6.8-6.9). The content of this chapter

was published in [242].

6.1 Introduction

Scaling in-network services is hard, as programmable network devices are in-

tended for high-efficiency packet processing, with limited resources (e.g., mem-
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ory, operations, and stages) compared with CPUs. One approach is to optimise

algorithms’ design for a single-device deployment, yet resource constraints re-

main a limitation. An alternative solution is moving to distributed in-network

computing, jointly utilising resources of programmable network devices.

Distributed in-network computing

DB

C E
FA 2

Network Device Server

Decomposing

Input

Target Program

Figure 6.1: Illustration of distributed in-network computing paradigm.

Distributed in-network computing raises multiple implementation chal-

lenges, especially where resource-heavy applications are considered, such as

large ML models. Figure 6.1 illustrates the challenges: (1) Decomposing a single

program into multiple segments. (2) Distributing the program’s segments across

multiple devices without affecting the correctness of its functionality. (3) Satisfy-

ing the program’s and network’s set of constraints, such as latency and resource

constraints. (4) Providing the program’s functionality for any set of paths within

the network without routing rule changes. This last challenge is possibly the

hardest, as in a network, packets may travel from any node to any node, and op-

erators may use different routing optimisation methods. In a software-defined

network, a controller has a centralised view of the network, including device

information, and potential routes (including multi-path routes) through the net-

work. Building upon this information, a controller can be designed to provide

a joint resource provisioning plan for distributed in-network computing. It can

utilise unused network resources, splitting a single in-network computing ser-

vice across several devices.
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Network service chains provide heuristic solutions for segment placement

and distributed planning [208]. However, there are intrinsic and significant dif-

ferences between it and distributed in-network computing, both in terms of the

type of devices used and their location. Unlike CPU- and GPU-based service

chains, deployed at the server level, in-network computing service segments

are deployed physically within the network, on switch-ASIC [30], FPGA [95],

or NICs [201]. The architecture, resource constraints, communication mod-

els and performance requirements are inherently different to traditional ser-

vice chains (see §6.2). Preliminary efforts toward distributed in-network com-

puting [127, 39, 193, 40] focused on the distribution problem. Some of these

works [39, 40] distributed multiple programs, rather than slicing a single pro-

gram, or partitioning M/A tables using manual directives [127]. Flightplan [193]

was the only one to disaggregate and place a distributed program, on rack/pod

level. Yet little effort has attended to the challenge of routing through a large

network, from any node to any node, without routing rules modifications or at

the scale of a WAN. This chapter aims to bridge this gap and provide such dis-

tributed in-network computing services to further improve the performance of

in-network computing services.

6.2 Challenges

To better understand the challenges in distributed in-network computing, I start

with an exploration of available resources in the network. Programmable net-

work devices are resource-constrained due to their performance-driven design

logic [87]. For example, the Intel Tofino switch [78] can guarantee Tbps-scale

throughput but has only 12 processing stages and around tens of Mb memory.
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These resource constraints are a main challenge for offloading applications to

the network. Still, in-network computing prototypes (e.g., caching [103], aggre-

gation [171, 116], ML inference [218, 245], resource scheduling [27], and consen-

sus [51]) demonstrated real-time processing, offloading computing tasks from

servers and achieving high performance.

1 2 3 4 5 6 7 8 9 10 11 12
Pipeline Stages

Memory
Tables

ALU
Hash 0

50

100 Percentage (%
)

Figure 6.2: Resource consumption of a basic functionality RARE Router on Intel
Tofino.

While the performance on a single device is high, resource contention be-

tween in-network computing applications and network functionality is a barrier

for adoption. To illustrate the challenge, Figure 6.2 shows the resource consump-

tion of the RARE open source router [130] when deployed on Tofino. As shown

in Figure 6.2, the router consumes more than half of the pipeline stages with only

basic functionality. Using more features of the RARE router exhausts and even

exceeds Tofino’s resources. Deploying an in-network computing program on the

same device as RARE, is hard or impossible without stage sharing. Figure 6.3(a)

shows the feasibility of deploying example ML models (using Planter [245]) on

Tofino, standalone and coexisting with RARE. As shown in the figure, most in-

network ML models are able to be standalone deployed, but will run out of

resources when coexisting with other network functions. Even for standalone

deployment models, as a model’s size increases to improve its performance, re-

source consumption increases too, as shown in Figure 6.3(b).
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Types SVM NB RF XGB
Stage 9 8 6 15
Entries 0.1M 0.1M 0.3M 1.4M
Alone ✓ ✓ ✓ ✗

Coexist ✗ ✗ ✗ ✗

(a) Alone vs Coexist w/ RARE
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Figure 6.3: ML models resource consumption and scaling with model hyper-
parameters changes. Hyper-parameter is depth for XGB and features for NB.

Consider the case where different ML models, as shown in Figure 6.3, are

used to implement a cyber-security service, detecting and dropping malicious

traffic. In a WAN, such malicious traffic may come from any user, pass through

any switch, and go to any destination. The cyber-security service will need to be

deployed in a manner that guarantees that no matter the path taken through the

network, malicious packets will be detected and dropped.

To support both normal network functionality, and the ML-based service, dis-

tributing programs across several devices is needed. However, it is not easy

to distribute an in-network application across multiple devices, for the follow-

ing reasons: 1. There is no agreed model of the network used for distributed

in-network computing. Intuitively, in-network computing should not affect ex-

isting network functions, nor the routing rules used to forward packets. 2. Af-

ter program segmentation, there are parameters shared across segments of the

application, and the data passing model is undefined. 3. Application splitting

and coexistence with network functions is error-prone, as well as guaranteeing

segments’ execution order on multiple nodes. To address these challenges, this

work explores efficient methods for deploying in-network computing services in

a distributed manner.
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6.3 The Concept of DINC

To explain how in-network computing can be distributed and deployed, I first

discuss common properties of algorithms using an example in-network comput-

ing application, and then demonstrate the many-paths nature of the network

using a sample network topology.

6.3.1 In-network Computing Example

In-network computing provides application functionality by mapping compu-

tation tasks to programmable data planes on network devices. These data

planes use match-action pipelines, where values are looked up in a table, and

the result of the lookup is an action. Typically, every match-action pair con-

sumes a processing stage within the pipeline. Sequential dependencies be-

tween operations lead to a series of stages used on the device, with meta-

data used to pass shared information between stages (metadata is stored in a

PHV [30], which is initialised per packet). Despite the high performance of ex-

isting work [103, 23, 245, 51, 91, 227, 226, 116, 241], resource limitations remain a

constraint. As demonstrated in Figure 6.3(b), scaling up computing complexity

leads to exhaustion of resources. I use naı̈ve Bayes as an example of a classical

ML classification algorithm that uses typical in-network ML mapping and faces

resource constraints.

Equation 6.1 shows the naı̈ve Bayes mapping used by §3.5.1 [245]. Different

from traditional naı̈ve Bayes, the log(#) operation converts multiplication into

addition (as multiplication is not supported on a switch). The map(#) operation
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Figure 6.4: Data plane implementation of Bayes based on [245] and Equation 6.1.

ensures that used intermediate values are covered with minimal accuracy loss.

ŷ = arg max
y

[map(log2 P(y)) +
n∑

i=1

map(log2 P(xi | y))] (6.1)

Figure 6.4 shows the data plane realization of the above equation. Step ❶ shows

the extraction of n features (fields) from the packet header, and storing them in

metadata fields as fx1 to fxn. Next, the probability of each class map(log2 P(y)) is

read from a table called read probability (RD Prob) into metadata fields as mc1 to mcm

(given a classification problem with m classes) in Step ❷. For every input feature

i, Steps ❸ and ❹, look up an intermediate value map(log2 P( fxi | c j)) and add it to

its respective class j. The prediction probability of all m classes will be mc1 to mcm,

and the final pipeline stage (marked compare) finds the class with the maximum

probability through comparison, and sets it as the output label (Step ❺).

While mapping details vary between applications, this example is represen-

tative in terms of its common stage-based structure and metadata passing. The

distributed deployment strategy of this example on a sample network topology,

and the challenges it faces, will be explained in Section 6.3.3.
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6.3.2 Network Scenario

In this chapter, I consider a distributed in-network computing deployment sce-

nario in a network with many-paths, using multiple ingress and egress nodes.

Data can originate from any ingress node and terminate at one or more egress

destinations. Beyond this any-to-any or many-to-many connectivity, techniques

such as load balancing or routing redundancy mean packets from the same ser-

vice may be routed through multiple paths, for a given source-destination pair.

Distributed in-network computing should not affect existing network pro-

tocols (e.g., IS-IS) nor services (e.g., load balancing). Given a deployment sce-

nario and underlying routing rules, distributed in-network computing should

find best-effort service deployment within given network constraints, without

changes to routing rules. In this manner, packets from any source node should

be fully processed before reaching their destination along any possible path.

6.3.3 Distributed Deployment Example

DINC enables the deployment of large in-network computing programs, as its

framework is able to slice a program into segments and deploy these segments

within network devices given resource constraints (e.g., memory, operations,

stages). Figure 6.5 shows a sample deployment of a Bayes classification algo-

rithm (explained in Figure 6.4) using three-features on a Folded-Clos topology

(assuming all network devices are programmable). Two inputs (core switches)

and four outputs (edge switches) are assumed1. Packets can go through any

downstream path with minimal changes. Segments on each device are shared

1This is a simplified scenario, traffic is presumably generated outside this network.
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Figure 6.5: An example deployment of an in-network algorithm (Bayes) on a
network topology (Folded-Clos).

among multiple paths flowing through the node. This figure shows an ideal ex-

ample of a distributed deployment, where Extraction (E) and read probability (RD

Prob) are deployed in the first hop (core switches), feature tables 1 & 2 ( f1, f2) in

the second hop, and feature tables 3 ( f3) and Compare (C) in the last hop (edge

switches). The deployment may be obvious, as the network is symmetric and

well structured. For larger or more complex networks and programs, the de-

ployment is complicated, as demonstrated in §6.9.

6.3.4 Related Work

NFV service chain planning. Service distribution is common in Network func-

tion virtualization (NFV) [220, 98, 101, 42, 41, 99] but different from DINC. NFV-

based work mainly focused on traditional processing, where the network serves

just as a medium, and latency and throughput are the main objectives. In DINC,

the network is both the processing element and the medium, and in-network ser-

vices are deployed across many paths. DINC’s deployment augments network

functionality without changes to routing.

Distributed in-network computing. As shown in Table 6.1, previous research
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Work Slice Code ILP Planner Any-to-Any Code Gen.

Hermes [40] ✗ ✓ ✗ ✗

SRA [127] ✓ ✗ ✗ ✓

SPEED [39] ✗ ✓ ✗ ✗

ClickINC [221] ✗ ✗ Partial ✓

Flightplan [193] ✓ ✗ Partial ✓

DINC ✓ ✓ ✓ ✓

Table 6.1: Comparison between related works. Flightplan supports any to any
while changing routing rules.

efforts [40, 127, 39] primarily focused on distributing programs across devices

to support a single path through the network. Notably, Hermes [40] and

SPEED [39] did not support slicing of a given program. In SRA [127], Match-

Action tables were disaggregated, and routing rules were introduced to reach

the next table. None of these studies addressed the many-paths, any-to-any rout-

ing problem. ClickINC [221] required program translation into a new language

and mainly supported symmetric topologies. Flightplan [193] demonstrated P4

program disaggregation, however, it is designed for rack/pod scale and its BSP

planner is less suitable for large-scale complex topologies. Importantly, Flight-

plan also introduces changes to routing rules and does not explore coexistence

with network functionality. In contrast, DINC does not modify routing rules,

scales to large networks, and coexists with basic network functions.

6.4 DINC Overview

We first provide an overview of the DINC framework’s operation, shown in

Figure 6.6. DINC is given an in-network computing program with both data

plane and control plane code components (shown in ❶), and a network topology
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Figure 6.6: DINC workflow overview (steps ❶ to ❽).

(shown in ❷). DINC’s P4 slicer (§6.7.1) extracts the program resource require-

ments (shown in ❻), dependencies (shown in ❸), and metadata information. The

network controller provides the routing table, with all paths identified either by

the controller or DINC (shown in ❹) and the resources available on each net-

work device (shown in ❺). DINC’s planner (§6.5) uses the outputs from steps ❸

to ❻ to craft an integer linear programming (ILP) problem and outputs a deploy-

ment strategy in step ❼. This guides the P4 generator (§6.7.2) for data plane and

control plane codes generation in step ❽. To provide an ideal deployment of in-

network computing program segments on complex network topologies, DINC

answers three key questions:

Q1: How to plan and distribute segments across multiple paths in the network? (§6.5)
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Q2: How to ensure functionality when programs are distributed inside a network? (§6.6)

Q3: How to make distributed in-network computing easy to deploy? (§6.7)

6.5 Planning

Most previous distributed in-network computing works focused on single-

planned paths [48, 104, 207]. In this section, I address the absence of distributed

planning for in-network computing across multiple paths, without influencing the

routing rules of the original network. To tackle this, the problem is formulated

within the DINC planner as an ILP problem and I introduce a solution with

reduced complexity. In §6.5.1, I introduce the network model and algorithm par-

tition and formally define a deployment strategy. §6.5.2 and 6.5.3 model the

deployment optimisation mathematically into an integer linear programming

problem. An ILP solver is discussed in the §6.5.4.

6.5.1 Network Model

We focus on the in-network computing tasks planning problem on pro-

grammable devices and hence ignore undeployable (unprogrammable) nodes

after edge contraction. A set of network devices with order and without dupli-

cation along a data trace connecting the input and output nodes is referred to

as an In-Out Path. A network with Nd deployable devices can be represented

by tuple (D,P), where D := {1, · · · ,Nd} is the set of devices and P contains

Np := |P| paths. Each element Pi ∈ P,∀i = 1, · · · ,Np is an ordered set of size

li, i.e., Pi = {p1
i , · · · , p

li
i }. The chain p1

i → · · · → pli
i represents a path from an input
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device p1
i to an output device pli

i , where li is the total number of devices in path

i. There are Nr types of resources in the programmable device networks (e.g.,

storage), and we use Rr
d to denote the available resource type r ∈ [Nr] on device

d ∈ D. Assume that the target in-network computing algorithm can be decom-

posed into Ne elements. Let E := {1, 2, · · · ,Ne} be the set of all the algorithm’s

element indices. For the DINC planner, let Xe→d ∈ {0, 1},∀e, d be the deployment

decision (strategy), where Xe→d = 1 indicates algorithm element e is deployed on

device d. If Xe→d = 1, by running element e, device d will cost Or
e units of resource

r (e.g., CPU running time or storage). The goal is to design a deployment strategy,

i.e., {Xe→d}, that can achieve application objectives (e.g., low latency) and a small

number of duplicated deployed segments while consuming little resources on

the programmable devices.

6.5.2 Constraints

A successful deployment strategy should typically satisfy dependency, integrity,

and resource constraints, which are explained as follows:

Dependency. Assume that the Ne elements have to be completed in order among

each in-out path. For every path, any elements e in the in-network computing

algorithm should appear at least once before its successor e′. Mathematically,

if element e′ is deployed on device p j
i , i.e., the j-th device of the i-th path, the

deployment decision variable Xe→p j
i
= 1 and element e has to be deployed on at

least one node in set {p1
i , · · · , p

j−1
i }, i.e.,

j−1∑
k=1

Xe→pk
i
≥ Xe′→p j

i
,∀e < e′, i ∈ [Np], j ∈ [li]. (6.2)

Integrity. All the segments should be executed on each in-out path to satisfy the

integrity of the algorithm. Therefore, on every path i, every element e ∈ E should
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appear at least once, i.e.,

li∑
k=1

Xe→pk
i
≥ 1,∀i ∈ [Np]. (6.3)

Resource Constraints. The type r resource on each device d must be sufficient

for all deployed elements. Therefore,

∑
e∈E

O r
e Xe→d ≤ R r

d .∀d ∈ [Nd], r ∈ [Nr]. (6.4)

Other Potential Constraints. The above constraints can be extended, encom-

passing additional and customised requirements, such as limitations on hops

and latency for specific services, constraints on throughput, and variations in

resource constraints using heterogeneous devices. The specific constraint condi-

tions applied can be adjusted based on the specific deployment scenario.

6.5.3 Objectives

We expect our deployment strategy to optimise the following three major objec-

tives in distributed in-network computing: minimise the resource consumption,

minimise the computation delay and minimise duplicate deployed segments.

Quantifying the aforementioned objectives is as follows:

Resource Consumption. A good deployment strategy should minimise the to-

tal resource consumption of all types of resource r. Let OR,r be the total type

r resource cost in the network. Recall that Or
e is the type r resource overhead

if element e is deployed, for each deployment strategy {Xe→d}, then OR,r can be

computed as follows:

OR,r :=
Nd∑

d=1

Ne∑
e=1

O r
e Xe→d. (6.5)

133



Latency. Assume that the transmission delay on each path is fixed regardless

of the execution task. I then focus (as an example objective) on minimising the

execution latency. The execution latency on each in-out path j ∈ [Np] can be

computed by accumulating the execution time of each element e. Suppose Le
d is

the execution time of element e deployed on device d. The execution delay OL,i

on path i can be computed by:

OL,i =

li∑
j=1

Ne∑
e=1

L
p j

i
e Xe→p j

i
(6.6)

Multi-objective Optimisation. We aim to design a deployment strategy that can

optimise resource consumption and performance objectives (e.g., latency) at the

same time. Such a problem can be formulated as a multi-objective optimisation

problem, where there may exist multiple Pareto optimal points (i.e., the execu-

tion latency cannot be minimised without consuming fewer resources). To find

such Pareto optimal points, we took a linear scalarisation approach [94]. The ulti-

mate objective function is a weighted linear combination of the execution latency

on all in-out paths and all types of resource consumption. i.e.,

O := wR

Nr∑
r=1

OR,r + wL

Np∑
i=1

OL,i, (6.7)

where wR,wL ∈ R+ are the weights of resource consumption and execution la-

tency, respectively. The above optimisation objectives can be flexibly adjusted

based on varying service requirements and deployment environments.

6.5.4 ILP Solver

Recall that deployment decision Xe→d are binary decision variables. Minimising

the scalarised objective function (6.7) under constraints (6.2), (6.3) and (6.4) can
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be rewritten as an ILP problem. The constraints (§ 6.5.2) and objectives (§ 6.5.3)

in this section are the most common ones and can be amended or replaced (§ 6.7)

for different applications.

Searching for the optimum solution of an ILP is NP-hard. We can tackle this

problem using the branch-and-cut method [151] that combines the cutting plane

method and brand-and-bound method. The solving details using standard li-

brary SciPy can be found in DINC’s GitHub repository [236].

6.6 Distributing Segments to Nodes

The previous section presented a theoretical solution for planning the program

distribution strategy, while questions still remain on how to effectively deploy

the program element into a programmable network topology based on the de-

ployment strategy. In order to clearly address these questions, I provide a brief

introduction to how typical in-network computing programs are executed. Fig-

ure 6.7 shows a sample in-network computing program. When packets come

in, features f1 and f2 are extracted from the packet header to PHV as metadata.

Together with m1, m2, and f3, all metadata convey intermediate results between

segments e1, e2, and e3, where the output is feature f3. The output f3 from the last

segment e3 is put back into the packet header as a result. Through this process,

PHV will be cleared between packets and metadata will reset. For the distributed

deployment of such a sample program, each segmentation should be sequen-

m1 m2 f3f2 m2 e3e2f1f1 f2 f3 m1e1e2e1 e3

Figure 6.7: In-network computing program, encode-based ML model as an ex-
ample [245], and the sliced segments of the program.
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tially executed and each segment requires metadata from dependent segments

in order to function correctly.

To realise this, two questions should be addressed. 1. How to encode and pass

metadata between segments? 2. How to ensure all program elements are being executed

in order and without duplication? These two questions are solved by using a DINC

dedicated header (§6.6.3).

A

B CInputs Output

e1 e3e2A

B CInput Output

Input e2e1 e3

Output Output

Figure 6.8: The sample in-network computing programs deployment on the pro-
grammable network with two in-out paths.

A simple toy example shown in Figure 6.7 and Figure 6.8 is used to demon-

strate these two problems. Consider given constraints when deploying the

shown algorithm in programmable network devices. One possible deployment

strategy (Xe→d in §6.5) is plotted in Figure 6.8. In this case, there are three in-out

paths within the topology {{B}, {B → C}, {A → C}}. The two problems addressed

in this case are:

1. Along path {A → C}, metadata from segment e1 on device A should be

encoded and passed to device C for segments e2 and e3. At the same time,

besides the input and output of segment e1, the system should recognise f2

(input of e2 on device C) as part of the input and output on device A. (§6.6.1)

2. Along path {B → C}, after packets execute e1, e2, and e3 on device B, the

segments e2 and e3 on device C should not be activated. While these two

segments should be activated when it receives the packet along the path

{A→ C} from the device A. (§6.6.2)
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6.6.1 Metadata Passing

Any used metadata should be well encoded and passed to the target segment

from its predecessor segment. There are several options to convey information

from one node to the other. The first option is to mirror and send the packet

independently [16]. However, this option is not realistic without synchronising

arrival time and will not give a guaranteed metadata delivery. Another option is

to pass metadata through the control plane, the control plane cannot guarantee

conveying metadata and has a limited bandwidth for data transfer. In DINC,

I choose to store metadata in a predefined header. Although a larger header

will increase the average packet size and influence the packet rate, the evalua-

tion shows the influence is minor and the program generated by DINC is able

to reach the full line rate. Most importantly, it can guarantee the runtime meta-

data passing. Once the metadata is marked as the output of the segment, DINC

will break and store it in several 32 bits chunks. In the parser of the following

dependent segment, the auto-generated encapsulation logic will help to restore

the metadata. To guarantee the consistency of metadata passing over segments,

and ensure transmission reliability when it is not used in some of the segments,

DINC designed a checking process to auto-complement missing metadata on

manually added markers.

6.6.2 Segment Traversing

In the distributed scenario, it is possible that segments are being duplicated es-

pecially when multiple paths join together as shown in Figure 6.8. To ensure

every segment is executed once and only once, a bit map is held by each packet.

Before the execution of any segment, it will check if the packet is fully processed
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by the predecessor-dependent segments. Once passing this check, along with the

execution of the segment, the bitmap will be updated with the current segment.

With the help of this per-segment bitmap checking process, no matter which path

the packet comes from or which set of segments the packet has been passed, they

can share the same set of segments without being duplicated and executed. All

the checking processes and segment bitmap IDs are auto-generated by the DINC

framework.

6.6.3 DINC Header Design

No matter what deployment strategy is employed, if segments are allocated on

different devices, information (e.g., intermediate results and segment ID) needs

to pass between devices. Thus, a standard DINC protocol header is designed to

meet requirements and allow services like intra-metadata encoding and passing

(§6.6.1) and segment traversing (§6.6.2).

Version           Program ID         Num features       Num segments
0                                          8                16                                                       24                             31

Bitmaps

Intermediate metadata

Num segments × 4 bytes

Num features × 4 bytes

Figure 6.9: The DINC header design. Fied program ID, number features, and
number segments reflect the information of the deployed in-network computing
program. Field bitmaps marks all processed segments. Field intermediate meta-
data holds all feature and variable information that needs to be passed.

As shown in Figure 6.9, beyond the DINC version, the protocol contains three

types of information: 1. program related, 2. metadata related, and 3. segment re-

lated. The program-related information shows which one or several in-network

computing programs are currently executed and included in the packet, mainly
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based on the Program ID field. The metadata-related contains information on the

number of intermediate features included and their values. The bitmap infor-

mation indicates the set of segments already executed. The overhead of DINC is

limited to 16B if the program is sliced into 32 segments or less, and the metadata

traversing between two segments is within 8B. Given the header in Figure 6.9

was designed with redundancy for future extensions (e.g., version, number of

features, number of segments, 32 bits bitmap), the used DINC header can be

smaller. The header size can be further minimised by adding constraints and

objectives in the planner [40]. Thus, the overhead of the DINC header is usually

not significant (§6.9.2 DINC overheads).

6.7 DINC Framework Design

The deployment of distributed in-network computing is challenging for two rea-

sons. The first is the complexity of the data plane program. It is hard to correctly

extract information from a given data plane program according to user expecta-

tions. The second is the complexity of data plane program generation. Recon-

struction of a valid data plane program under a certain architecture, coexisting

with its use case, and with an embedded DINC header is difficult, especially

when the slice is complex.

The DINC framework is designed to tackle these two challenges. DINC con-

tains a data plane program Slicer, a strategy Planner, a code Generator, and a

Tester, allowing the generation of sliced data plane programs and their deploy-

ment on target hardware nodes. The detailed workflow of the framework shown

in Figure 6.10 is as follows:
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Figure 6.10: The DINC framework components and workflow steps (❶ to ❼).

❶ User input: The target data plane program and slicer markers are required

as user inputs for DINC configurations.

❷ Network configuration: The network topology and its related resources are

required and stored in DINC configurations, which can generate directly

from the network controller or emulate by using the DINC framework.

❸ DINC slicer: The network slicer slices the target program based on the

markers, builds the dependency between each segment, and digs the re-

source information of each segment.

❹ DINC planner: The planner is used to generate deployment strategies for

the target program. Based on the input network topology, segment de-

pendency, remaining resources for each network device, and the resource

overhead of each segment from previous steps, the planner applies the

ILP (§6.5) to formulate the plan.

❺ P4 generator: The code generator generates data plane codes for all pro-

grammable network devices. To generate the codes, the generator jointly
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combines the selected architecture and use case based on the DINC config-

urations, and combines the program segments of the input program from

the deployment strategy.

❻ Synthetic test: Before loading the generated code to the real hardware, a

synthetic test is implemented by the framework. The framework will ac-

tivate a test environment with the same topology as the input network,

and load the generated model for each node. The test can then be done

within the environment while the content varies by use cases, e.g., the

functionality of the normal network functions and in-network computing

program. Common tests include the functionality verification of the net-

work protocol and in-network computing programs. P4 debugging tools

can also be used in this field to trace and correct bugs in each generated

segment [251, 190].

❼ Segment loader: When the test is finished, the generated data plane pro-

grams with sliced segments will be sent to the controller for deployment.

From the seven key components mentioned above, the DINC planner has

been introduced in Section 6.5. The other two key components that simplify

the process of distributing segments to nodes are the DINC specialised P4 code

slicer (§6.7.1) and P4 code generator (§6.7.2). The remaining four components are

used as auxiliaries for the evaluation and functionality tests. The testing results

of this framework will be presented in §6.9.

6.7.1 Code Slicer

The DINC slicer is used to segment the input data plane program and extract in-

formation from it. There are two design options, the first is a compiler-like mod-
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ule that is able to auto-detect and extract information. Despite its advantages,

this design needs extra configuration efforts, limits the scope of input programs

and information types and can lead to errors. The second, used by DINC’s slicer,

is to use manually added markers to slice the program and extract the informa-

tion. This solution is lightweight and flexible.

A functional slicer needs to support several properties of the program: 1) The

code is between different parts of the pipeline (e.g., parser, ingress, egress). 2)

The dependency of each segment is complex. 3) The required resources may

change between cases.

Manually added markers enable solving these challenges. I use a fragment of

a sample-sliced program in Algorithm 6.2 to show how it works. In the program,

markers @! and !@ are used to notify the slicer where the information should be

extracted. The marker design is flexible and can be customised in the frame-

work. The markers are written in comments and do not affect the execution of

the original program.

Multiple types of information among markers are used to indicate the DINC

slicer the segment identifier and the position. For example, in Algorithm 6.2 lines

13 and 15, the Slice identify the segment ID is 0 and the End shows the end of this

segment. Position in markers shows the position of that segment is control apply

( line 13 ), while the segment in control block is marked as control ( line 2 ). All

segments with same ID and position will be merged and saved for future use.

The dependency information is embedded in the marker Previous (Algo-

rithm 6.2 line 13, 16, and 19). It indicates if this segment has any prerequisite

segments (e.g., Pre,0,1 in line 19 means that segment 2 depends on results

from segments 0 & 1). The prerequisite segment can be none, single, or multiple.
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1 control Ingress(...){
2 // @!S,0!@ @!P,control!@
3 table e_1{...}
4 action e_1(...){...}
5 // @!E,0!@
6 // @!S,1!@ @!P,control!@
7 table/action...
8 // @!E,1!@
9 // @!S,2!@ @!P,control!@

10 table/action e_3...
11 // @!E,2!@
12 apply{
13 // @!S,0!@ @!Pre,none!@ @!P,control-apply!@
14 e_1.apply();
15 // @!E,0!@
16 // @!S,1!@ @!Pre,none!@ @!P,control-apply!@
17 e_2.apply();
18 // @!E,1!@
19 // @!S,2!@ @!Pre,0,1!@ @!P,control-apply!@
20 e_3.apply();
21 // @!E,2!@
22 }
23 }

Algorithm 6.2: Sample in-network ML P4 code (DT) with markers to show a
sliced pattern as in Figure 6.7. Segment information like End, Slice, Previous,
and Position are included between markers @! and !@.

The required resource information, metadata in/out, and any other required

information are used in a similar way as a dependency to be added to the marker.

It will be totally flexible for the DINC slicer to add or remove required resources,

if the current resource marker is missing for a specific segment, it will be marked

as zero. The resource with the same segment ID will be added together without

being influenced by the marker position.

This is not the only option for slicer design and the DINC’s modular frame-

work allows personalised slicer design that is different from the current de-

sign (§6.7.3).
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6.7.2 Code Generator

The design objective for the code generator is to generate the data plane program

that can be directly applied to each node, and with maximise reused resources.

To meet this, the DINC generator is designed based on a controller plus multiple

architectures and uses case building blocks. Before generating any node, the

controller will invoke the selected architecture and use case block based on the

network controller or the DINC configurations. Besides writing the skeleton of

the data plane program, the selected architecture folder will call the respective

use case function for writing use case codes at each position of the program. The

deployment strategy will also be applied in the architecture block to drive the

regeneration of the sliced segment at the right position. Functions that can auto-

generate P4 codes dealing with metadata embedding and extraction as well as

bitmap checks are applied and can be called by any nodes or segments during

the generation process.

6.7.3 Modular Framework Design

As new architectures and target devices appear frequently, a design that allows

extension is required. The DINC framework applies a modular design, where

a centralised controller is used to call corresponding modules (e.g., related to

solver, topology, or use case) according to the input DINC configurations. When

a module is selected, all the functions under this module will be loaded to the

controller. With this modular framework design, DINC can be adapted to the

required case easily and with strong customised capacity.
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6.7.4 Multi-program Deployment and Resource Fairness

DINC is primarily designed to distribute a single large program across multiple

devices when it cannot fit on a single device. However, it does not currently sup-

port the automatic distribution of multiple programs provided incrementally; it

only supports iterative deployment. To ensure fairness, limitations should be im-

posed within the planner, such as allocating available resources evenly or adding

upper constraints on the total resources for each resource type.

This subsection discusses the runtime fairness of DINC’s deployment of al-

gorithms from two perspectives. 1. Fairness in terms of planning: Network infras-

tructure owners (or service providers) have the flexibility to ensure fairness in the

deployment through various strategies, such as setting constraints on the max-

imum resource usage per device per resource category or imposing constraints

on the overall resource usage. Alternatively, they may opt for more aggressive

strategies, such as a first-come, first-served approach. The choice of strategy

depends on the characteristics and requirements of the network operator. 2.

Fairness in terms of services: DINC, particularly in scenarios devoid of intricate

operations like multicast or recirculate, inherently provides fairness in network

services. This is because DINC does not disrupt the load balancing and forward-

ing of the regular network, which is one of its distinguishing features. If abso-

lute fairness is required, maximum throughput limits for individual services can

be configured on switches. Nonetheless, services that may introduce additional

traffic require the addition of constraints in the planner to mitigate potential im-

pacts.
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6.8 Implementation

The DINC framework is implemented in Python 3.10. The ILP solver is based

on milp, a mixed-integer linear programming solver in SciPy v1.10.0. The topol-

ogy is stored using NetworkX 3.0. The framework is open and available on the

DINC’s GitHub repository [236]. DINC supports a range of predefined modules,

including topologies, solvers, slicers, architectures, targets, and testers. Under

topologies, DINC currently supports Fat-Tree, Folded-Clos, and BT WAN. The

P4 slicers currently support manual configuration inputs, where inputs come

from manual marking or are auto-generated by a data plane automation frame-

work like Planter. DINC supports two architectures: v1model [9] and TNA [97]

and coexists with simple forwarding, RARE [130], and Intel’s switch.p4.

6.9 Evaluation

Our evaluation focuses on three key questions: (i) does DINC enable deploy-

ment of large in-network computing algorithms that were not previously feasi-

ble (§ 6.9.2)? (ii) is DINC suitable for different network topologies with various

configurations and scales (§ 6.9.3)? and (iii) is DINC’s performance sensitive to

network configurations and parameter tuning (§ 6.9.4-§ 6.9.5)?

6.9.1 Evaluation Setup and Datasets

1. Topologies. DINC is evaluated using two common network scenarios — a

Folded-Clos based data center network topology (shown in Figure 6.11(a) with 3

core, 6 aggregation level, and 24 edge switches, connecting around ten thousand
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Figure 6.11: Network topology used for evaluation.

servers), and a large Internet service provider (ISP) backbone network - British

Telecom (BT) (shown in Figure 6.11(b) with more than a thousand nodes: 8 inner

core, 12 outer core, 63 metro, and 925 tier 1 switches) [168]. An aerial view of the

BT topology is shown in [242].

Using the two topologies, Table 6.3 shows a subset of potential ingress/egress

switch setups. A total of five setups are presented, and are combinations of two

dimensions: communication direction and deployment view. The direction of

communication in a network may depend on a service requesting or responding,

going between Core (C) and Edge (E) switches in Figure 6.11(a) or Inner Core (I)

and Tier 1 (T) switches in Figure 6.11(b). Peer-to-peer communication between

end servers is considered between Edge (E) switches or Tier 1 (T) switches.

In terms of application deployment, a service may target all traffic going

through a network, or a subset of users. In the first case, the network opera-

tor is the one that defines and controls the deployment. In the second, which
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fits e.g., campus networks, only a subset of the network might be used and have

proprietary constraints.

2. Workloads. I use several popular in-network computing programs from dif-

ferent domains: in-network telemetry (INT) using PINT [23], load balancing us-

ing Pegasus [121], and in-network ML inference based on Planter (Chapter 4)

with 5 ML models. These applications represent advanced in-network comput-

ing services, yet they require significant resources and need optimisation when

co-deployed with other data plane forwarding functions.

3. Metrics. The efficiency of distributed in-network computing is evaluated for

the following: 1. Number of used nodes: The number of nodes required to deploy

an in-network computing program. This number depends on the total num-

ber and connectivity of available nodes. 2. Hops per path: The number of hops

required to complete a given in-network computing program. Hop number is

directly proportional to the latency, and hops are used to represent latency, and

to ensure the evaluation is unbiased in terms of network setups and equipment

selection. Cumulative distribution function (CDF) of hops provides further in-

sights into the distribution of required hops per path. 3. Duplication of segments:

In topologies with multiple in-out paths, duplicate segments may exist on differ-

ent paths. The amount of duplication is relative to the total number of nodes and

shows the efficiency of the deployment strategy. 4. Execution time: Job comple-

tion time of the ILP solver is critical to its application. The ILP solver’s execution

time depends on multiple factors, ranging from the topology to the program,

and the solver will be generally scalable if the time increases in a linear manner.

4. Environment. Both large-scale simulation and small-scale hardware tests are

conducted. The simulation is based on Mininet and BMv2, and hardware tests

run on Tofino using APS-Networks BF6064X-T (64 × 100G, SDE 9.6.0) and two
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NetBerg Aurora 710 (32 × 100G, SDE 9.9.0) switches. Tofino compiler is used for

feasibility testing.

6.9.2 Functionality

Simulation: DINC is evaluated both on the Folded-Clos data centre network

and BT topology, using the five setups and seven workloads. I measure the re-

source consumption and number of hops on both single and distributed deploy-

ments for all workloads, as summarised in Table 6.3 and 6.4.

Program
Stand Alone

Seg.
Setup

Stage Alone Coexist No Clos Topology BT Topology

INT-PINT [23] 7 ✓ ✗ 5 4 In: all C/Out: one E In: all I/Out: one T

LB-Pegasus [121] 8 ✓ ✗ 4 1 In: all E/Out: all C In: all T/Out: all I

ML-NB [245] 8 ✓ ✗ 2 4 In: all C/Out: one E In: all I/Out: one T

ML-SVM [243] 9 ✓ ✗ 3 5 In: one E/Out: one E In: one T/Out: one T

ML-DT [218] 2 ✓ ✓ 2 3 In: one E/Out: all C In: one T/Out: all I

ML-XGB [243] 6 ✓ ✗ 4 2 In: all C/Out: all E In: all I/Out: all T

ML-RF [243] 6 ✓ ✗ 3 1 In: all E/Out: all C In: all T/Out: all I

Table 6.3: Sample programs and setups on both topologies. Segmentation (Seg.)
details can be found in DINC repository [236]. Duplication (Dup.) - number of
duplicated segments. ✓/✗ Deployment feasibility. Distribution (Dis.) - distri-
bution feasibility. Nodes - nodes used/total. Hops - average used hops/path
length. C/E/I/T refers to the node in Figure 6.11.

DINC is capable of processing distributed deployment problems at data cen-

tre level with about 10000 servers or at ISP level with around 1000 switches. As

Table 6.4 shows, all workloads, including those that cannot coexist with RARE

switch functionality (✗ in Coexist column) are feasible in a distributed deploy-

ment, coexisting with network functionalities (Dis. column). As some programs,

e.g., ML-DT, coexist with other switch functions, DINC selects the best node
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Program
Folded-Clos Topology BT ISP Topology

Path Dis. Nodes Hops Dup. Path Dis. Nodes Hops Dup.

INT-PINT [23] 18 ✓ 10/33 3/3 9 36 ✓ 3/1008 1.42/3.92 8

LB-Pegasus [121] 432 ✓ 30/33 2/3 56 26512 ✓ 400/1008 3.11/3.81 796

ML-NB [245] 18 ✓ 9/33 2/3 7 36 ✓ 6/1008 2.92/3.92 4

ML-SVM [243] 6 ✓ 8/33 3/3 5 12 ✓ 7/1008 3/5 4

ML-DT [218] 18 ✓ 1/33 1/3 0 36 ✓ 1/1008 1/3.92 0

ML-XGB [243] 432 ✓ 9/33 2/3 11 26512 ✓ 410/1008 2.76/3.81 422

ML-RF [243] 432 ✓ 30/33 2/3 33 26512 ✓ 400/1008 3.11/3.81 405

Table 6.4: The resource utilisation of distributed deployed sample programs sup-
ported by DINC. Segmentation (Seg.) details can be found in [236]. Setups refer
to Table 6.3 and Figure 6.11. Duplication (Dup.) - number of duplicated seg-
ments. ✓/✗ Deployment feasibility. Distribution (Dis.) - distribution feasibility.
Nodes - nodes used/total. Hops - average used hops/path length.

along the path to optimally utilise resources and minimize latency. Such resource

optimisation advantages can be found in all distributed deployed programs.

In the comparison between standalone and distributed deployment, as illus-

trated in Table 6.3 (in the same row), consider the example of ML-RF/XGB. Un-

der setup 2 shown in Table 6.3 and Figure 6.11, with a Folded-Clos data cen-

tre configuration featuring 3 core, 6 aggregation, and 24 edge switches (equiva-

lent to 1000 servers), the solver successfully resolves 4 segments. In this setup,

more than 400 distinct data paths require service deployment. DINC’s imple-

mented algorithm deploys segments on only 9 out of 33 devices, achieving ser-

vice completion with an average of 2 (out of 3) hops. Additionally, there are

only 9 secondary segments duplicated, compared to deploying on each individ-

ual data path (which would require thousands of repeated segments) or alter-

natively routing all flows requiring service through a single path or a subset of

paths. This significantly enhances deployment efficiency and reduces resource

consumption.
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In the comparison between distributed deployment under different path se-

tups (among rows in Table 6.3 and 6.4), workloads in BT topology using all-to-all

scenarios (setups 1 & 2) require using less than 40% of the nodes, and each path

requires on average less than one duplicated segment. For one-to-one and one-

to-all scenarios (setups 3-5), not all the devices are needed for complete task ex-

ecution. In the data centre setting, the number of all-to-all deployments requires

one-third of nodes when data is arriving from the core (e.g., incoming to the data

centre). Tasks for outward flows may require all nodes if a latency optimisation

is applied (comparing ML-RF and ML-XGB). This shows that DINC’s ILP solver

can generate planning with efficient node utilisation and limited duplication un-

der different topologies and traffic path conditions for both use cases.

DINC overheads: 1. Communication Overhead. Considering the scenarios listed

in Table 6.3 and 6.4, the maximum DINC header size needed is 20B. This trans-

lates to 3.77% traffic overhead in the ML scenarios for packet classification. Us-

ing the ML models for flow-level classification using the first 30 packets per

flow [33, 140], this overhead can be further reduced to 1.18%. For in-network

telemetry applications, specifically under the Hadoop workload [165, 23], the

communication overhead is as low as 0.08%. 2. Resource Overheads. DINC’s

distributed deployment does not introduce additional memory overheads, as

illustrated in Figure 6.12(a). However, DINC’s distributed deployment does re-

quire additional pipeline stages. In comparison to a non-distributed program

(the ideal case, which is calculated from the unsegmented program), the de-

ployment of sliced segments requires 2 additional stages overhead in total, as

shown in Figure 6.12(b). The two nodes indicate the two consecutive connected

network devices used for distributed deployment. These extra stages are pri-

marily used to ensure the sequential execution of segments, as discussed in Sec-

tion 6.6.2. Due to this design characteristic, other programs in Table 6.3 and
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Figure 6.12: Overhead of DINC on distributed deploying ML-RF [243] on two
nodes, same as in the last row of Table 6.3 and 6.4. Seg. Ideal - resource con-
sumption of segments calculated from the unsegmented program, WS - with
switch functionality (switch.p4).

6.4 entail the same resource overhead. Based on the stage consumption results

in Figure 6.12(b), Figure 6.12(c) presents the co-deployment together with the

L2/L3 switch with 15 network features (switch.p4), which is an advanced version

of the RARE router [130]. Compared to RARE in Figure 6.2, switch.p4 consumes

more resources, which is used here for a stress test. The figure shows that a 3-

stage segment in the first network device (Node 1) can be co-deployed without

any stage overheads, while a 5-stage segment requires one extra stage overhead

on the following Node 2.

Comparison with state-of-the-art: Flightplan [193] is a state-of-the-art solu-

tion for P4 program disaggregation, which focuses on rack/pod scale topology,

mainly targets at heterogeneous resource usage, and affects the routing rules

by assigning the output port. Detailed comparisons between DINC and related

works are in §6.3.4. In this evaluation, I apply the Flightplan planner with ob-

jectives in terms of latency, throughput, and hops. I compare a deployment of

ML-RF [243] on Clos (similar to the topology used in the Flightplan [193]) and

BT topologies using both DINC and Flightplan. As Figure 6.13 shows, given the

same program segmentation, in the Clos topology (33 nodes/switches), DINC

152



Clos BT

20
40
60
80

N
od

es
 (%

)

Flightplan
DINC

(a) Nodes.
Clos BT

20
40
60
80

H
op

s (
%

)

Flightplan
DINC

(b) Hops.
Clos BT

100
101
102
103

D
up
lic
at
io
ns

Flightplan
DINC

(c) Duplications.

Figure 6.13: Resource consumption comparison between Flightplan [193] and
DINC on deploying ML-RF [243] on both BT ISP and Folded-Clos topology with
setup 1, same as in the last row of Table 6.3.

and Flightplan use the same number of nodes and require the same number of

hops for program completion (classification result). This is a result of a sym-

metric topology. Benefiting from the ILP planner, DINC requires 35.3% less seg-

ment duplications, saving 11.3% of memory resources. The benefits of DINC

are demonstrated on the larger BT wide area network (1008 nodes), where DINC

uses only 39.7% of the nodes, compared with Flightplan’s 96.3%, and reduces the

number of duplicate segments from 1901 to 405, saving 54.5% memory resources

in total while maintaining the same number of hops. Compared to the heuristics

used in Flightplan, DINC’s ILP Planner is able to handle complex environments

better and place segments efficiently.

Hardware test: DINC is evaluated on a small-scale hardware setup using the dis-

tributed RF-ML program on Point-to-Point and Fat-Tree topologies constructed

using three Tofino switches, covering the majority of scenarios in Table 6.3 - 6.4.

RF-ML is chosen as Planter provides a functionality validation test. The result

shows the model functions correctly with the same accuracy as a standalone de-

ployment.
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6.9.3 Scalability

Using ML-RF as a leading example, I explore the scalability of the DINC solver

on both topologies in terms of two key factors: the number of paths in the topol-

ogy and the number of segments in the in-network computing program. De-

spite the exponential increase in solving time for complex topologies, our tests on

medium and large networks show that DINC solver efficiently handles the prob-

lem within a reasonable timeframe. It achieves millisecond-level planning for the

core to single switch deployment (network setup 4 in Table 6.3) for both Folded

Clos data centre topology (which is able to support around 10000 servers) and

BT ISP topology (for the whole UK). Network-level deployment for a 6-segment

ML-RF program across all cores and edge switches is solved in 1 second for the

Folded-Clos topology (400 paths) and 1 minute for the BT ISP topology (26k

paths). Looking into the trend of time consumption, as reported in Figure 6.14(a)

and (b), a setup where input is all Core/Inner core switches and output is an in-

creased number of Edge/Tier 1 switch. When the number of Edge/Tier1 nodes

increases, the number of paths also increases linearly, while the time required by

the DINC solver increases not as steeply as the number of paths increases. When

testing the number of segments, I apply the same network setup 4 for chasing

a relatively large usage of paths. In Figure 6.14(c) and (d), when the number of

segments of in-network computing programs increases, the time consumption

increases exponentially. However, this is acceptable as the number of segments

in an in-network computing program is usually small (the good places to “cut”

the programme is limited).
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Figure 6.14: DINC ILP solver runtime and number of In-Out Paths scaling with
coverage area (the number of edge/tier 1 switches) or number of program seg-
ments.

6.9.4 Performance

We use random forest (ML-RF in Table 6.3 - 6.4) as a leading example to show

how DINC performs under different network scales. The random forest pro-

gram requires 6 stages and can be deployed within a single path with consecu-

tive switches. Figure 6.15 shows CDFs of hops along all 5 sets of in-out paths

generated by 5 different setups. As reported in Figure 6.15(a), random forest can

be executed within two hops on all paths on Folded-Clos topology due to its

relatively simple and strongly symmetric topology, for all setups.

In Figure 6.15(b), for BT ISP topology, setups 3 and 5 exhibit the best per-

formance in terms of latency as they process the traffic from the user level (input

only comes from one switch). Under this circumstance, there is no conflict among

the objectives of lower latency, memory, and the number of segments (slicing),
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Figure 6.15: CDF of hops needed to complete a program. Setups are in Table 6.3
and Figure 6.11.

allowing for closer-to-source deployment. Setups 2 and 4 have a similar perfor-

mance and share a relatively larger number of hops than the optimised solution.

This is because their tasks come from network inside and the input switches are

inner core switches. These setups contain more in-out paths but the traffic comes

in at the places where each path is easier to share segments. Setup 1 has the

worst latency performance and it requires 4 hops to ensure all paths finish the

processing of the program. This is because setup 1 represents the deployment

of services from all tier 1 edge switches to the inner core. The shared switches,

usually at the inner part of the network, are at the end of each route. It will be

an extreme waste of resources if we deploy duplicated segments on all paths for

lower latency. For this reason, even though both setups 1 & 2 have the same

number of paths and just swap input and output switches, they have different

CDF results.

In conclusion, we observe that DINC performs effectively in the distributed

deployment of programs, whether in common data centre networks composed

of 33 network devices or in large-scale ISP networks with up to 1008 network

devices.
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6.9.5 Sensitivity

We test the sensitivity and the trade-offs of the DINC solver to the average num-

ber of hops and the required number of duplicated segments, as the relative

weights between latency and other objectives are changed. Figure 6.16(a) and

(b) show that for both two topologies when we increase the relative weight of la-

tency above a threshold, the average number of hops will decrease. Yet, to ensure

functionality, the provided strategy requires more duplicate segments. This im-

plies that DINC users have the flexibility to adjust deployment strategies based

on the defined objective function and its associated weights. Note that DINC

is relatively robust and the deployment strategy will not change abruptly when

relative weights change.
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Figure 6.16: How relative objective weight of w (Equation 6.7) can influence the
DINC deployment strategy.

The robustness of DINC’s distribution planner is further explored for ML-RF.

When changing the number of segments from 2 to 6, DINC consistently gener-

ates identical distribution results. This consistency can be attributed to the fact

that a certain level of finer algorithmic segmentation remains insufficient to bet-

ter utilise remaining resources along the path.
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6.9.6 Throughput & Latency

This section shows the evaluation of the throughput and latency of different de-

composed RF model segments on an Intel Tofino switch 64 × 100G, coexisting

with the RARE router [130]. In compliance with Intel NDA, I report the relative

latency of each segment+RARE with switch.p4 (an L2/L3 reference switch).
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Figure 6.17: Throughput and latency on hardware.

For the sample distributed RF segments, As shown in Figure 6.17, all seg-

ments can coexist with the RARE router program and can achieve a full line rate

of 6.4Tbps bit rate. In terms of latency, the coexistence of RARE & in-network

computing application segment will increase 10% of the number of clock cycles

through the pipeline. However, even when coexisting with RARE, all deployed

segments have a relatively low latency, which is lower than 60% of the refer-

ence design (switch.p4). The full line rate shown in Figure 6.17(a) proves that the

DINC-added bitmap and metadata passing mechanism do not limit the through-

put of the system. The relative latency in Figure 6.17(b) shows that the coexis-

tence of network functions when using DINC does not significantly increase the

latency through the pipeline.
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6.10 Discussion and Limitations

DINC is an important step toward distributed in-network computing and im-

proved utilization of data plane resources.

Scope of DINC. Not all in-network computing programs are suitable for a

distributed deployment. DINC is well-suited for stateless programs without

packet recirculation. In stateful programs, the limitation stems from potential

multi-path routing, rather than DINC’s distributed deployment. Packets going

through different paths will experience different states (e.g., counter value). This

can be resolved by setting DINC to generate single-path results. In programs re-

quiring recirculation, DINC cannot guarantee that the segmented program can

resend packets to the switch of the first deployed segment. Instead, recirculation

can be transformed to longer programs (as in loop unrolling) before applying

DINC.

DINC prerequisites. To run DINC, users need to provide a program, the pro-

gram’s segmentation, and resource requirements for each segment, and it is as-

sumed users have a certain level of understanding of their programs. Automa-

tion of the segmentation and resource tasks can be achieved by adding new

DINC modules (e.g., [112]). Additionally, the Planner requires the network’s

topology, routing paths (any or planned), and available resources at each node.

The architecture and base program running on each network device are needed

to auto-generate the distributed code.

Stage sharing. Although switch functionality consumes considerable resources

in the pipeline, it is still possible to share stages with an in-network application.

Currently, DINC does not exhaust these spaces during the planning process and

leaves them as elastic “spaces”. They are sometimes used for operations like
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assigning metadata to header and bitmap checking.

Slicing applications in other languages. In general, DINC is designed for P4

code decomposition and distribution on programmable network devices. To

support other languages, e.g. NPL or Domino [187], the P4 Generator of DINC

should be replaced with the relevant languages’ generator.

Partitioning characteristics. Different program partitioning can impact usabil-

ity. Finer-grain segmentation yields better results from the planner. However,

increasing segmentation also increases the computational burden on the plan-

ner. Additionally, the placement of slices can impact the amount of metadata

used, thereby influencing communication overheads. This consideration can be

incorporated into optimisation constraints and objective functions.

Runtime updates. The control plane can drive runtime control and updates

based on the planner’s results. However, when adding or altering services, or

when there are changes to network topology, it is necessary to rerun DINC and

update affected nodes. For certain modifications, such as adding new routing

paths, it is sufficient to run DINC on the added routing paths rather than the en-

tire topology. While this incremental approach may not yield the optimal result,

it avoids non-critical updates and can significantly reduce computational over-

head. However, to find the global optimal result, I have to run DINC over the

entire topology.

Failed DINC compilation. Three reasons can lead to a compilation failure. 1. In-

sufficient Resources for Deployment: If a path contains less resources than the mini-

mum needs of a given program, or if the network resources cannot jointly satisfy

the minimal deployment requirement across multiple paths, no valid planning

solution exists. 2. Inaccurate resource estimation: An overestimation of device re-
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sources by the central controller, an underestimation of required resources by

the user, or an underestimation of DINC’s code merging overheads can lead to a

failed compilation. As these issues are reported during compilation, they can be

fixed by adjusting the corresponding resource constraints and re-running DINC.

3. Inadequate Code Slicing: In certain instances, excessively coarse-grain code par-

titioning can result in deployment failures. Very large code blocks may exceed

a single device’s resources, requiring a finer-grain partitioning, followed by a

re-execution of DINC.

Network failures. A device failure does not necessarily lead to a program fail-

ure. If multiple paths exist between the source and destination (prior to the fail-

ure), operations continue without disruption. This is due to the handling of link

failures by the network’s inherent load balancing and routing mechanisms, un-

derscoring DINC’s advantage of preserving the original routing and network

functionalities. In the case of a device failing along a single route, a new route

needs to be found and DINC should be incrementally run for this route.

Stages consumption In the evaluation, I use models and configurations that are

sometimes intentionally larger than in the original publication. For example, for

ML-RF [245], it is possible to deploy a small 3-stage model, with a reduced level

of accuracy, while we use a larger model that consumes 6 stages. This is as one

of DINC’s aims is to improve the scalability of in-network programs, and ML

model sizes in particular.

Planning objectives and constraints. The constraints and objectives above are

provided as an example and are suitable for most in-network computing work-

loads. More objectives, such as latency or throughput constraints, variations of

use-case and resources constraints, and minimizing packet overheads [40] can be

specified in a planner module (§ 6.7). DINC also supports heterogeneous devices
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by adjusting constraints on the corresponding resources.

DINC Applications. DINC is designed to execute a single large in-network

computing program across multiple network devices in a distributed manner.

It supports various in-network computing applications, such as telemetry [23],

aggregation [116], inference [247], and load balancing [121]. Furthermore, by re-

laxing planner constraints, DINC can potentially offer distributed deployment

strategies for a broader range of computing tasks (e.g., [123, 58, 68]).

6.11 Summary

This chapter presented DINC, a distributed in-network computing framework

to further scale in-network computing services, including in-network ML. DINC

decomposes in-network computing programs and generates planning strategies

to distribute decomposed segments onto devices within the network (§6.3-6.4).

DINC leverages ILP to yield a planning strategy (§6.5), and a custom header

to flexibly handle intermediate metadata while traversing segments (§6.6). To

streamline the process, DINC is implemented with an automated and modular

framework design, facilitating ease of adaptation to new requirements in diverse

use cases (§6.7). Experimental results show that large-size in-network computing

programs can be deployed within the network using efficient decomposing and

optimal planning (§6.8-6.9). DINC boosts applications’ performance by utilising

network resources without compromising functionality.
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CHAPTER 7

IN-NETWORK MACHINE LEARNING APPLICATIONS

After exploring algorithm mappings as well as deployment techniques in pre-

ceding chapters, this section focuses on the use cases of in-network ML. Previ-

ous efforts predominantly applied in-network ML to anomaly detection, mainly

for the classification of packets or flows [218, 33, 119, 84, 89]. This use case has

been covered and assessed in Chapters 4 - 6. This chapter first summarises the

anomaly detection use cases from previous chapters and extends their scope to

include the detection of caching and financial attacks (§7.1) [245, 243, 244, 242].

Next, this chapter explores in-network ML applications in IoT traffic classifica-

tion (§7.2) [228, 226, 227]. Different from attack detection in §7.1, this use case

mainly focuses on the runtime model update solution and privacy-preserving in-

network ML mechanism, building on top of Planter. Likewise, based on Planter

and IIsy, this chapter further discusses the application of in-network ML in finan-

cial market prediction (§7.3) [90, 91]. This chapter also demonstrates the applica-

tion of in-network ML to load-balancing, based on an in-network reinforcement

learning algorithm proposed in Chapter 3 (§7.4) [241]. Note that this chapter

does not intend to cover all potential in-network ML use cases. The purpose is to

offer some leading examples of in-network ML applications, demonstrating the

use of the proposed tools from previous chapters, and inspiring the adoption of

in-network ML in other practical contexts. While I was not the lead on all use

cases, I contributed as an “expert assistant” and research collaborator. Specifi-

cally, I helped define the use cases and their in-network solutions, adapted the

mapping framework and strategies to all the use cases, and conducted part of

the evaluations.
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7.1 Anomaly Detection

ML has demonstrated its efficiency in detecting anomalies across various sys-

tems [50, 70], especially networks [52]. Anomaly behaviours often exhibit dis-

tinctive features such as high volume and rapid dissemination [17, 12], necessi-

tating swift detection to mitigate its impact. Conventional server-based detection

methods tend to be less responsive [201]. Additionally, the utilisation of teleme-

try data often exhibits a coarse granularity [128], while inspecting all packets

places significant pressure on both network capacity and servers’ computational

ability [96, 15]. In-network ML-based approaches, running on programmable

network devices, have high throughput and can categorise packets in real-time

within the network. Immediate actions can be taken after categorisation, such

as dropping or limiting those packets identified as malicious, or routing them to

servers for additional processing. Such measures facilitate the early termination

of suspicious traffic, thereby protecting the system and alleviating the burden

on both networks and backend servers. Other in-network ML based anomaly

detection works, e.g., Mousika [215], LEGO [124], and NetBeacon [249], were in

parallel or cited our early works [247, 245, 243].

7.1.1 Network Anomaly Detection

Prior chapters have shown our exploration of using in-network ML for detecting

network anomalies and intrusions, such as Denial of Service, Remote-to-Local

and User-to-Root attacks [117]. Under this scenario, our detection system can di-

rectly take measures, such as dropping or limiting the data rate of packets/flows,

based on the classification results of in-network ML on network devices, aim-
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ing to safeguard the servers and networked system. To realise this, I proposed

algorithm mappings (Chapter 3) and a fast-tailored framework (Chapter 4) to

implement various ML algorithms on programmable network devices. I also fo-

cused on improving the classification performance of these inference algorithms

by introducing hybrid (Chapter 5) and distributed (Chapter 6) in-network ML

systems. These novel techniques have been applied to detect traditional net-

work anomalies using datasets such as UNSW [140], AWID3 [36], CICIDS [175],

and KDD [191], showing more than 90% accuracy and F1 score, achieving line

rate classification with sub-microsecond latency [245]. Moreover, these methods

can offload around 70% of the load from servers to network devices, achieving

a median latency reduction of approximately 70% with negligible compromise

on accuracy. This is achieved at the cost of only 3 pipeline stages and less than

5% of memory on programmable network devices. These results have shown the

promise in utilising these in-network ML solutions to detect anomaly behaviours

in data centres [244], edge systems [37], and WAN [242].

7.1.2 Caching Attack Detection

The exponential expansion of e-commerce necessitates the accurate identification

and swift response to popular items matching users’ interests, whether from the

perspective of e-shoppers or the platform itself. In-network caching represents a

technique that enables rapid responses to user requests by retrieving cached val-

ues stored within network devices. However, implementing in-network caching

within the backend of an e-commerce system introduces potential security vul-

nerabilities. The proliferation of automated bots engaging in fraudulent activi-

ties has been increasingly observed in this context [55, 192, 230], which has the

potential to falsify the popular items stored in the caching systems (Figure 7.1).
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Studies have illustrated that even a slight enhancement in the hit rate, by just 1%,

can lead to a significant reduction of over 35% in application layer latency [45].

This slower response time can significantly affect sales within the field of e-

commerce [157, 219].
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Figure 7.1: General deployment scenario of INCS (source: [84], originally drawn
by me).

To mitigate attacks targeting e-commerce systems, we propose INCS [84]

(work led by Masoud Hemmatpour), aiming to protect its caching system. As

shown in Figure 7.1, INCS employs ML inference on DPU or SmartNIC between

caching units (either host-based [61] or in-network caching [103]) and networks.

For the inference algorithms, INCS utilises in-network ML to classify incom-

ing requests by extracting requests’ features such as crucial time intervals be-

tween consecutive requests and the specific items these requests pertain to. For

those traffic classified as aggressive bots, INCS limits its rate or immediately

drops them. This approach enables the detection, response, and defence against

queries generated by bots.

To implement INCS, we introduced a new “Data Loader” module and a

“Common P4” module in Planter (Figure 4.2) for realising INCS’s specialised fea-

ture extraction process (Figure 7.1). In terms of ML models’ deployment, INCS

directly utilises Planter, implementing in-network ML models on the NVIDIA
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BlueField-2 DPU with BMv2 [8] software switch.

We evaluate INCS’s performance in distinguishing varying levels of bot ac-

tivity. The synthetic dataset employed in this assessment is derived from real

bot traffic patterns observed on e-commerce websites [84]. The results demon-

strate that in-network ML solutions can achieve detection accuracy of 80.42%,

87.36%, and 94.72% for moderate, intense, and aggressive bot activities, respec-

tively. These findings show that INCS is effective in protecting the caching sys-

tem against bot attacks.

7.1.3 Transaction Fraud Detection

Fraudulent activities are widespread in financial transactions nowadays [163].

Transactional fraud yields substantial and widespread adverse effects, leading

to potential financial losses amounting to hundreds of billions for individuals,

businesses, and society [133]. Hence, in averting and minimising potential harm,

it is important to detect fraudulent activities. In previous works, ML algorithms

are extensively employed to detect fraudulent patterns within real-time trans-

action data streams [25]. However, the surge in transaction volume per second

poses a challenge to server-based ML models, impeding their efficiency in reduc-

ing detection time. This overload on servers impedes their capacity to promptly

prevent the processing and completion of fraudulent transactions.

To address this challenge, we realise an in-network ML-based transaction

fraud detection system [89] (work led by Xinpeng Hong), to replace conven-

tional server-based solutions. This system is tailored for deployment within the

data systems of financial institutions. As shown in Figure 7.2, the new system di-

rectly relocates traditional server-based ML services to programmable network
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Figure 7.2: General deployment scenario of in-network transaction fraud detec-
tion (source: [89], partially contributed by me).

devices. It facilitates real-time transaction fraud detection using in-network ML

inference via the Planter framework within the programmable data plane. This

in-network fraud detection system specialises in feature engineering for trans-

action fraud. Specifically, upon receiving a new transaction record, the system

operates within the data plane to select, manipulate, and convert raw data into

appropriate ML features. These features are then passed to in-network ML mod-

els for inference to classify whether the transaction is fraudulent or legitimate.

Similar to INCS, the in-network ML based transaction fraud detection sys-

tem is implemented using Planter. This system added a new “Data Loader”

and “Common P4” module to realise its specialised feature extraction process

in-network. Using Planter, this framework can be deployed on both the software

target (BMv2, running on DPU) and hardware target (Intel Tofino).

We evaluate this system using several financial fraud detection datasets [129,

176, 182]. In contrast to server-based machine-learning solutions, the in-network

system implemented on hardware switches significantly boosts transaction pro-

cessing rate by over ×800 per second and substantially reduces latency by over

×1300 per transaction. This significantly reduces the time for each transaction

consumed in the fraud detection system. Additionally, the system achieves a
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relative accuracy of 99.94% to server-based benchmarks and maintains a relative

F1-score of 93.66% to server-based ML, with only a minimal decline in classifica-

tion performance.

7.2 IoT Traffic Classification

The previous discussion focused on the development of in-network anomaly de-

tection solutions. While IoT traffic can be treated as a “special case” of anomaly

detection, this separated section mainly focuses on dynamic traffic classification

and privacy-preserving in-network ML systems, using IoT as a background. In

recent years, there has been widespread adoption of IoT devices. Among the net-

work components facilitating the connection between IoT devices and the core

network, IoT gateways play a crucial role by enabling functions like data rout-

ing, aggregation, and segregation. With the evolving deployment of IoT devices,

there is an increase in security risks. IoT gateways are required to offer traffic

analysis and serve as the primary defence against various sources of traffic, as

noted in [222]. The distinctive characteristic of ultra-reliable low-latency com-

munications (URLLC) in 5G, coupled with the pervasive and dynamic nature of

interconnected IoT devices, amplifies the potential for dynamic threats to rapidly

propagate within IoT networks.

Various conventional ML algorithms like random forest, XGBoost, and naı̈ve

Bayes have proven their efficiency in IoT device identification and traffic clas-

sification [113]. The use case transitions from traditional server-based ML ap-

proaches to implementing classification within the network, leveraging tech-

niques from earlier chapters, particularly the Planter framework. However, em-

ploying an ML-based solution requires data collection and continual model up-
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dates to sustain effectiveness. The model update during runtime remains chal-

lenging, and data collection raises privacy concerns. This section investigates

strategies for efficiently performing runtime updates of in-network ML models

and explores integrating federated learning with in-network ML to establish a

privacy-preserving ML inference system.

7.2.1 Runtime Model Update

Given the dynamic nature of IoT systems and the fluctuating patterns within

IoT data streams, regular model updates become crucial to counter data drift.

Several systems, like OASW [223], have been proposed to adapt to these pattern

changes in data streams for conventional server-based ML systems. However,

there remains a lack of discussion on performing model updates specifically for

in-network ML-based classification within IoT networks.

To realise continuous learning and consistent updates for in-network ML, we

introduced P4Pir [226] (work led by Mingyuan Zang) based on Planter. P4Pir

incorporates runtime traffic parsing and model updates at the IoT gateway, en-

abling real-time multi-protocol data collection, in-network ML-based attack mit-

igation, and seamless runtime ML updates. As illustrated in the P4Pir workflow

(Figure 7.3), Step ❶ represents the typical workflow of Planter-based in-network

ML detection (Chapter 4), where a model is trained and integrated into M/A

table rules and P4 code to analyse incoming traffic. Building upon this existing

in-network inference solution, P4Pir not only identifies and blocks suspicious

traffic (Step ❷) but also logs this information to the control plane by encapsulat-

ing extracted features in a digest (Step ❸). The digest only encapsulates the re-

quired features in a digest structure instead of the whole packet. This can reduce
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Figure 7.3: System design of P4Pir (source: [228], partially contributed by me).

the extra overhead by forwarding shorter messages, only carrying the features

needed for analysis. Utilising these digests, P4Pir retrains the model to adapt to

the new traffic pattern (Steps ❹ & ❺). Planter is then used to map the the new

model, generating a set of new rules. These updated rules are implemented into

the data plane, while outdated rules are removed (Step ❻). With this updated

mechanism, P4Pir continually learns from incoming traffic, thereby mitigating

abnormal traffic continuously in a dynamic environment (Step ❼).

P4Pir is developed based on the Planter framework using Python 3. The main

control of the P4Pir framework is independent of Planter, which calls the func-

tions in the Planter to train ML models and map the trained model to the data

plane. During this process, the data plane code is generated in P4 language util-

ising either the v1model architecture for the BMv2 software switch [8] running

on P4Pi (a Raspberry Pi-based platform providing data plane programmabil-

ity) [115] and Dell Edge Gateway (Dell EMC Edge Gateway 5200) [53].

We evaluate P4Pir using publicly available IoT datasets, EDGE-IIOTSET [59]

and CICIDS 2017. The evaluation shows that P4Pir’s runtime model update
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mechanism can efficiently learn and adapt model parameters to new attacks.

Specifically, P4Pir enhances the accuracy of the decision tree by 50% when the

attack transitions from “SCAN” to “DOS” in the EDGE-IIOTSET dataset. Sim-

ilarly, in the CICIDS 2017 dataset, P4Pir enhances the accuracy of the random

forest by over 30% when the attack changes from “SYN” to “SCAN”. The up-

date process takes approximately 0.05s for model retraining and about 0.45s for

updating new rules in the data plane. The runtime overhead of P4Pir is an addi-

tional ∼10% temperature and ∼21% utilisation in CPU on P4Pi [115].

7.2.2 Privacy Preserving Federated Learning

When considering a larger network setup constructed by several swarms [37],

multiple switches serve as IoT gateways between IoT end devices in each swarm

and a cloud-based remote server. Each IoT end device is susceptible to various

network attacks like Scanning, man-in-the-middle (MITM), and DDoS, with at-

tackers potentially exploiting these end devices for protocol attacks or forming

botnets. Training an in-network ML model based on data and traffic collected

from each gateway while maintaining privacy presents a challenge.

Federated learning is an ML learning technique designed to train an aggre-

gated model across decentralised devices while preserving privacy and reducing

data transmission. Using federated learning, ML models can be locally trained

on distributed nodes, and their parameters are sent to a server for consolida-

tion, resulting in a global model. ML algorithms like ensemble tree models

have demonstrated effectiveness in implementing FL. In the context of federated

learning, differential privacy has been explored to increase training privacy. Dif-

ferential privacy incorporates random noise during shared models, thereby min-
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Figure 7.4: System design of FLIP4 (source: [227], partially contributed by me).

imising the risk of attackers intercepting sensitive information related to shared

trained models.

In this use case, based on the Planter and P4Pir frameworks, we introduce

FLIP4 [227] (led by Mingyuan Zang), which enables federated learning-based

privacy-preserving in-network analysis. The FLIP4 process includes the steps

outlined in Figure 7.4. Initially, a gateway (represented as a switch) is initialised

with in-network ML using the Planter framework trained by the local traffic

dataset (Steps ❶ to ❹). The local model undergoes periodic updates facilitated

by the P4Pir workflow. Concurrently, on the server side, a global model is main-

tained to aggregate individual local models from multiple gateways, with the

parameters of each trained model transmitted to the server under differential

privacy (Step ❺). Upon receiving updated information from all gateways, the

aggregator employs federated learning techniques to average parameters and

update the global model. This global model’s parameters are then sent back to

each IoT gateway for local model updates (Step ❻). Planter on each gateway
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maps the updated model to table rules (Step ❼), and P4Pir inserts these new

rules into the data plane pipeline at runtime (Step ❽). Within this framework,

IoT gateways efficiently handle traffic with minimal delay and a high through-

put. Edge servers are responsible for managing the storage and training of lo-

calised data. The models trained locally are consolidated in the cloud to create

a global model, and to address privacy concerns, noise is introduced to any up-

loaded models’ weights.

FLIP4 is implemented by extending the design presented in the federated

learning model [132] and P4Pir [226] (built upon Planter [245]). The FLIP4

prototype can operate on Raspberry Pi using P4Pi-v.0.0.3, Dell Edge Gateway

(Dell EMC Edge Gateway 5200) utilising BMv2, and APS-Networks BF6064X

equipped with Intel Tofino chipset using Barefoot’s SDE 9.6.0. The controller

and server functionalities are implemented in Python.

In the ML performance evaluation of this prototype, Mininet is used to em-

ulate FLIP4 performance on multiple nodes (3 nodes in this case). Two pub-

licly available IoT datasets, CICIDS 2017 [175] and IoT Sentinel [137], are used

in this evaluation. This evaluation involved comparing the inference perfor-

mance of FLIP4’s XGBoost with the state-of-the-art work [160], implemented in

an in-network manner using BNN. The evaluation results demonstrate that the

aggregated global model of in-network XGBoost within FLIP4 provides better

accuracy in both datasets compared to previous federated learning methodolo-

gies [160, 131]. In the IoT Sentinel dataset, the in-network XGBoost model out-

performs both decision tree-based [131] and BNN-based [160] works, achieving

a 2%-3% higher accuracy than these approaches. Similarly, in the CICIDS 2017

dataset, the FLIP4-based XGBoost has a similar performance compared to the

BNN-based design [160], while demonstrating a 17% higher accuracy than the

174



decision tree-based federated learning method [131]. We also show that differ-

ential privacy in FLIP4 leads to a 4% decrease in accuracy loss, presenting an

accepted accuracy cost for privacy-preserving transmission of model weights.

7.3 Financial Market Prediction

In addition to the previously discussed applications, and beyond ordering the

priority of transactions in §5.8.2, in-network ML can be directly applied to

predict future stock price movement in High-frequency trading (HFT). HFT

is a form of algorithmic trading that involves placing a large number of or-

ders swiftly while promptly reacting to evolving market conditions [74, 73].

The emergence and development of artificial intelligence have attracted the

widespread adoption of ML algorithms into the field of HFT and show ad-

vanced performance [107, 92]. One example is the effective use of ML to pre-

dict forthcoming price shifts through the analysis of market microstructure sig-

nals extracted from Market by Order (MBO) data streams [108, 148, 234, 203].

Nonetheless, the complexity of ML models and the location of server-based de-

ployment introduces additional processing and transmission time, which sig-

nificantly impacts the generated profits, thereby generating a need for reducing

latency across the current ML-based trading process. With the emergence of net-

work programmability and in-network computing, ML models can be realised

within the data path by conducting inference on the programmable network de-

vices with reduced latency and enhanced throughput [169, 218]. In this section,

we explore the utilisation of in-network ML inference to reduce latency within

this time-sensitive financial application.
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7.3.1 Prediction of Future Stock Price Movement

MBO data constitutes an order-based data stream containing trade instructions

for stocks [233]. It encompasses an order’s timestamp, unique identifier, action

(such as adding a new order, cancelling an existing one, or modifying price

or quantity), side (buy or sell for the given security), price, and quantity, as

shown in Figure 7.5. Our initial investigations reveal that utilising only stateless

MBO features in the ML model results in a limited accuracy of approximately

36.7% [90, 91]. To enhance this prediction performance, better features should be

explored. Limit order books (LOBs), derived implicitly from MBO data, encom-

pass an assortment of unmatched limit orders awaiting execution at predeter-

mined or superior price levels [75], which are commonly used in ML algorithms

to forecast future trends in stock prices [233, 147]. However, constructing LOBs

in programmable network devices for ML classification is challenging.
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Figure 7.5: 1. Market by Order (MBO) data fields, 2. graphical representation of a
limit order book (LOB), and 3. workflow of updating a LOB with MBO messages
(source: [90], partially contributed by me).
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In this use case, we proposed LOBIN [91] (also referred to as Linnet [90],

work led by Xinpeng Hong), which can accelerate the prediction of stock price

movements by dynamically constructing and updating LOBs within the pro-

grammable data plane. Specifically, as shown in Figure 7.5, upon receiving a new

MBO message for a particular stock, LOBIN swiftly updates the corresponding

LOB. It then extracts features by gathering data on price and quantity from var-

ious levels on both the bid and ask sides of the LOB. These features serve as

inputs for in-network ML to forecast trends in future stock prices. Figure 7.6 il-

lustrates the proposed workflow of LOBIN. The workflow firstly constructs LOB

using historical market data feeds and trains the ML model (Step ❶). The trained

model is then mapped to the data plane, and table entries are created based on

the Planter framework (Step ❷). This process involves generating a P4 program

that encompasses both the integrated ML inference model and logic related to

LOB operations: construction and updating LOB and feature extraction (Step

❸). Subsequently, based on Planter, the generated P4 program is compiled and

loaded onto the programmable data plane, while table entries are loaded via the

control plane (Step ❹ and ❺). Based on the trained in-network ML model and in-

network constructed LOBs, the LOBIN workflow realises the direct future stock

price prediction within the data plane.

To further enhance LOBIN’s performance, the hybrid deployment system can

be applied [88], as elaborated in Chapter 5. Under the hybrid deployment, the

prediction of price movements within the switch is labelled only when the con-

fidence level of the prediction is high. Conversely, if the confidence level is low,

the MBO data would be forwarded to a server for prediction using a larger and

more complex model.

LOBIN is implemented based on the Planter and IIsy framework. By incorpo-
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Figure 7.6: System design of LOBIN (source: [91], partially contributed by me).

rating a newly designed LOBIN-oriented Common P4module, we integrate LOB

code with ML inference code generated through Planter [245]. In the data plane,

to update the LOB for each incoming MBO, LOBIN employs registers to keep

prices. On certain hardware targets, registers can be accessed multiple times in

the pipeline, with reading and writing each constituting an access (resulting in

two accesses). To implement price updates, LOBIN uses recirculation, involving

one pass for register reading and a subsequent pass for writing. LOBIN is pro-

totyped on both an APS-Networks BF6064T-X Intel Tofino switch running SDE

9.4.0 and a software environment through SDE 9.9.0 deployed on a server (for

Tofino 2 emulation). The servers are equipped with an AMD EPYC 7302P CPU,

256GB DDR4 RAM, operating on Ubuntu 20.04 LTS. The switch and server are

interconnected via NVIDIA ConnectX-5 100G NICs using direct-attach cables.

We assess LOBIN’s performance using NASDAQ’s Historical TotalView-

ITCH sample data feeds [10]. Specifically, MBO messages for various stocks

on the 27th of March 2019 are extracted, representing the most recent avail-

able data in this source. Within this dataset, three stocks from distinct sectors,
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PYPL (Financials Sector), PEP (Consumer Staples Sector), and GOOGL (Com-

munication Sector), are chosen for evaluation due to their significant market

capitalisation [91]. Our evaluation reveals that across diverse models and stocks,

LOBIN demonstrates an average accuracy decline of 16.47% (51.04%←67.53%)

and an average F1-score decrease of 15.60% (42.28%←57.87%) when operating

on Tofino compared to server benchmarks. LOBIN achieves microsecond-level

latency, showing over a 10% latency improvement compared to the NASDAQ

order-matching server benchmark [28].

7.4 Load Balancing

Previous use cases predominantly focus on classification. However, there is a

scarcity of adoption and evaluation of in-network ML for other types of tasks,

such as control. This section extends the type of applied in-network ML algo-

rithm to reinforcement learning and introduces it to a load-balancing use case.

Network traffic is dynamic by nature. The increasing use of cloud comput-

ing and the introduction of more and more networked services mean that traffic

patterns are less predictable and more imbalanced than in the past [231]. Further-

more, network topologies are also complex and evolve over time, as a network

grows, nodes fail and connectivity changes. The dynamism of the network is a

special challenge when trying to satisfy capacity demands and maintain service

objectives. In networks where multiple paths exist between source and desti-

nation, load balancing aims to assign flows to different paths in a manner that

optimises network utilisation [231], and consequently user experience.

The classic load balancing algorithm, equal-cost multi-path (ECMP) [199],
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evenly distributes traffic to all available paths using a hash function. While

ECMP is simple and feasible within switches, it may suffer imbalance due to

hash collisions and varying data rates [231], or global traffic imbalancing in net-

works with asymmetric topologies [71]. Network telemetry, and in particular in-

band telemetry, and the rise of software defined networks, enabled new load bal-

ancing solutions such as CONGA [14] and HULA [105]. These solutions gained

real-time insights into network utilisation, using a variety of in-network tech-

niques. However, they still use fixed load balancing policies.

Unlike fixed-strategy policies, reinforcement learning has the ability to dy-

namically adapt to unknown environments. It improves policies by interact-

ing with the environment to find the optimal policy. When an environment

changes, reinforcement learning can gradually discover new optimal strategies,

adjusted based on trial and error and environmental feedback. Its applicability

to complex problems, interactive learning, and autonomous decision-making ca-

pabilities make it a promising solution for load balancing challenges. Previous

works have applied reinforcement learning to host-based load balancing [161]

and controller-based load balancing [250], but the exploration of reinforcement

learning for switch-based load balancing remains limited [231].

7.4.1 In-network Q-Learning for Distributed Load Balancing

In this use case, we proposed a solution named QCMP [241], a reinforcement

learning-based distributed load balancing solution for network switches. QCMP

applies in-network Q-learning, as introduced in Chapter 3.3.4, to adjust the

weight of each path, balancing the load across the network. QCMP uses INT

to collect congestion and utilisation information across the network, and uses
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Q-learning to make decisions. QCMP’s distributed switch-based load balanc-

ing ensures quick reactions and high scalability, overcoming the limitations of

centralised controllers. The reinforcement learning-based decision ensures con-

tinuous policy updates by QCMP and adjusting to diverse environments. The

implementation of QCMP follows the structure outlined in Figure 3.4, imple-

menting in-network reinforcement learning with the Q-table in the data plane.

Most data centres use hardware switches for high throughput and low latency

traffic forwarding. On hardware targets, the register-based solution is harder

to implement and has limited scalability. Therefore, we focus on M/A-based

Q-learning (Figure 3.4 (b) in Chapter 3.3.4) as a leading example for QCMP.
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Figure 7.7: System design of QCMP.

A high-level view of QCMP’s implementation is shown in Figure 7.7. The

operation distinguishes between two types of packets: normal traffic and INT

messages1. Normal network traffic, on the left of Figure 7.7, is forwarded based

on path weights. Parsed packets are forwarded to ports based on routing tables

(routing-related) and weights (load balancing-related). INT packets, on the right

1Use of dedicated INT packets is for illustration purposes
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of Figure 7.7, contain queue lengths information, used to update path weights.

This information is sent to the control plane for Q-value updates. The Q-table

and the match-action table which stores path weights, are initially set to equal

weight. When INT packets pass through a switch, the switch updates queue

length in the INT header. For coverage, we assume that source routing is used,

as in [194]. INT packets are mirrored to the CPU and the controller calculates a

new Q-value and updates the Q-table in the control plane. Based on the queue

lengths from INT packets, path weights are updated in the M/A table.

Both in-network Q-learning strategies are implemented in BMv2 software

switch using P4 with v1model architecture. The M/A table-based Q-learning

approach is also implemented on an Intel Tofino switch-ASIC (APS-Networks

BF6064X, SDE 9.5.0) using TNA architecture. Emulation of QCMP uses

Mininet [240]. The switch control plane is written in Python and supports

P4Runtime. QCMP hardware performance test is run on Intel Tofino. System

level operation is evaluated using BMv2, and performance is compared with

ECMP. QCMP is evaluated on a 3-tier Fat-Tree topology with two spine switches

connected to a pod. Within a pod, two aggregation switches are connected to

two top-of-rack (ToR) switches. In the evaluation, the queue length rate on the

simulator ranges from [0, Nqueue = 100] and we set Nq = 10. In the evaluated

network topology, each switch is connected to two other switches, which means

Np = 2. The path changes weight k is initialised to 5 and the constant x in the

reward equation is set as 50. The model starts with a high learning rate and ex-

ploration rate for rapid explorative learning but reduces to lower values for a

more exploitative approach that converges accurately to the optimal policy. The

exploration rate is limited to a minimum of 0.1 to overcome non-optimal states,

a discount factor of 0.25 to lay more emphasis on immediate reward and less on

long-term reward.
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Figure 7.8: System performance comparison between QCMP and ECMP.

Figure 7.8 shows the performance of QCMP compared to ECMP over a 500-

second episode, with the output port queue rates changing every 100 seconds.

A 10-second moving average is used for both sets of results in order to limit

the effect of noise due to the random variations of the hash function. As shown

in Figure 7.8 (a), QCMP’s throughput starts at the same level as ECMP, with

around 60%, but it learns the optimal path weights to achieve a throughput of

100% within 30 seconds. At 100 seconds, when the queue rates are switched,

the throughput suddenly drops to around 50%, which is slightly worse than

ECMP for a short time. Note that this happens only due to the significant artifi-

cial change in port rates in our experiment. At 400 seconds, the optimal queue

weights are re-found within 14 seconds. This is shorter than the first 3 times of

learning because the Q-table already contains a trained policy2. These show that

QCMP adapts to network conditions changes.

CDFs of QCMP and ECMP throughput are shown in Figure 7.8 (b). The aver-

age throughput of QCMP is 92.6% (including rate change events), whilst ECMP

achieves 66%, showing significant improvement. Our experiments show that the

gap in performance grows as networks become more complex. QCMP achieves

over 95% of input packet rate at 62% of the time, and matches 100% input packet

2The scale of seconds is intentionally set, to avoid fluctuations.
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rate at 22% of the time, outperforming ECMP 99% of the time.

QCMP’s implementation on Tofino is tested using a snake configuration, util-

ising 64 × 100GE ports. Our measurement shows that QCMP achieves full line

rate on all 64 ports, with no packet drops. The resources used on the switch are

negligible, less than 1% of memory resources and two pipeline stages.

7.5 Summary

In-network ML is increasingly recognised as a viable computational paradigm

for ML-based applications. This chapter applied in-network ML to four distinct

use cases. These applications include not only anomaly detection (§7.1) and traf-

fic classification (§7.2) but also extend to services like financial market prediction

(§7.3) and load balancing (§7.4). These applications show that in-network ML

models have a unique deployment location, good inference performance, high

throughput, low latency, and the capability for early traffic termination, making

it more advent than conventional solutions. The evaluation of these use cases

has shown the potential of applying proposed in-network ML in data-intensive

and time-sensitive use cases.
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CHAPTER 8

CONCLUSION

This chapter summarises the contributions of this research (§8.1). These efforts

are a large step toward in-network ML as a practical service. Additionally, this

chapter discusses the limitations (§8.2) & future work of in-network ML (§8.3),

and ends with concluding remarks (§8.4).

8.1 Summary of Contributions

In this thesis, I have thoroughly addressed the challenges in mapping in-network

ML to programmable network devices. These efforts, using a bottom-up ap-

proach, contribute to the practical in-network ML:

In-Network ML Mapping. To address the challenge of algorithm mapping,

I proposed general methodologies, derived from implementation experiences.

These mapping methodologies serve as a guidance for in-network ML realisation

and drive the implementation of new models. By applying these methodologies,

I realised over ten in-network ML models with more than fifty variations. Ex-

perimental results demonstrate that these mappings maintain accuracy with no

or only minor accuracy loss. Compared to existing work, the new mappings can

achieve up to two orders of magnitude reduction in table entries and 50% fewer

pipeline stages, as well as maintain good inference accuracy and high system

performance on multiple programmable network devices. This offers abundant

and efficient in-network ML algorithm mappings for practical applications.

Rapid Prototyping Framework. To realise the proposed in-network ML map-

pings, I introduced Planter framework for rapid prototyping. Planter integrates
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the workflow of ML model training, data and control plane code generation,

and mapped model verification. The modular design of Planter allows plug-

and-play deployment and enables support for new hardware targets, algorithms,

and use cases without the need for redesigning the whole framework. Using this

framework, users can implement the in-network ML algorithm mapping within

minutes. To date, Planter has already been used by five other researchers, show-

ing good applicability.

Hybrid Deployment System. To overcome the limitation of inference perfor-

mance for in-network ML models, I applied the concept of hybrid deployment

to IIsy, which employs a small in-network ML model on the network device and

large ML models over the backend server. The high-confidence decisions will

be directly made in the network and low-confidence samples will be forwarded

to servers for further processing. With the help of hybrid deployment, the in-

network ML system can achieve close to optimal classification results, with min-

imal resource overhead on programmable network devices, while reducing the

load on the backend server by 70% for the data-intensive use case, and saving

50% latency on average for the time-sensitive application.

Distributed Deployment Framework. Even though hybrid deployment pro-

vides high inference performance, the in-network ML is still limited in size. To

further scale the size and performance of the in-network model, I focused on

distributed in-network computing and proposed a DINC framework. DINC

employs an integer linear programming model (strategy planner) for deploy-

ment optimisation on multi-path networks with resource-constrained network

devices. DINC also includes a data plane program slicer, a code generator, and

a tester, which automates the slicing and generation of data plane programs for

targeted hardware nodes. By jointly utilising resources among network devices,
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larger available resources can be accessed and better service performance can be

provided. It is shown that DINC is an important first step towards the efficient

utilisation of data plane resources through distributed in-network computing.

In-network ML Applications. The thesis also explored the application of pro-

posed solutions in four use cases, showing the benefit of applying in-network

ML. Moreover, some in-network ML solutions in these applications go beyond

the above designs. For example, one incorporated features like a continuous

update mechanism in Planter to address data shift and model updates, and the

other proposed federated in-network ML based on Planter to scale the solution

while safeguarding local data privacy. These applications have demonstrated the

effectiveness of proposed mappings and frameworks, indicating the potential of

applying in-network ML algorithms across diverse use cases.

8.2 Limitations

Beyond the contributions, there are two main limitations (scope):

1. Not all ML models are suitable for running on programmable network de-

vices at this stage. While this study mitigates resource constraints through

novel mappings and deployment strategies, it does not claim universal

support for all ML models. One example is deep learning, which can even

exhaust resources easily (e.g., Video RAM) on a GPU.

2. This thesis aims to implement ML algorithms utilising P4 on pro-

grammable network devices with PISA architecture. Other potential net-

work targets, whether present or future, may employ P4 or different pro-

gramming languages, following similar or distinct architectures. The scope
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of this thesis does not directly extend to implementing in-network ML al-

gorithms on alternative architectures, such as those not RMT-based or us-

ing languages like C and Domino [187]. However, the outcomes of this

research can contribute to this endeavour, by applying the introduced con-

cepts and frameworks.

8.3 Future Work

In the future, based on outcomes from this research and the above limitations,

several directions can be further researched:

Training In-network ML Models. Current training of in-network ML algo-

rithms mainly relies on standard libraries such as scikit-learn and PyTorch. How-

ever, there’s room for further optimisation of ML structures and their train-

ing processes to better align with the data plane architecture and data struc-

tures. While some related works have explored training methods, such as the bi-

nary decision tree [34], federated learning [132], and knowledge distillation [43],

many other models and training enhancements remain unexplored. One exam-

ple lies in the exploration of leveraging deep learning-assisted tree model train-

ing to enhance accuracy and reduce resource consumption. These improvements

can enhance the performance and scalability of in-network ML while leveraging

existing mapping techniques.

In-network ML Models Mapping. The types and complexities of ML models

continue to advance, and it is the fact that there is an increased demand for so-

phisticated models in various use cases. Exploring efficient solutions for map-

ping various emerging ML models, especially deep neural networks, to network
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devices is an ongoing work and is a future direction. For example, how to effi-

ciently offload a large language model to programmable network devices is still

unsolved. The support of these models can empower in-network ML with high

inference performance, and attract broader use cases to apply in-network ML.

In-network ML Use Cases. Many ML models have been proven feasible and

reliable in the use cases that are described in existing works, especially network

anomaly detection. Even though several in-network ML use cases have been ex-

plored in Chapter 7, compared to traditional ML, the range of in-network ML use

cases is still very narrow, leading to limited adoption in practice. For example,

it is worth exploring the application of in-network ML in enhancing IoT devices

with low-latency ML services in smart cities and in improving the performance

of next-generation cellular (6G) & satellite networks. Applying in-network ML

beyond the networking domain, to fields such as natural language processing

and computer vision, is also worth exploring. At a certain point, the emergence

of new applications will also, in turn, drive in-network ML improvements and

stimulate novel ideas.

In-network ML Targets. Currently, in-network ML algorithms are predomi-

nantly deployed on devices such as programmable switches, SmartNICs, and

FPGA, and prototyped on software targets such as BMv2 and T4P4s. However,

hardware targets exhibit various limitations in terms of resources such as mem-

ory, operations, and pipeline stages. Designing future programmable network

devices with expanded functionality, without compromising network perfor-

mance, presents a significant challenge. The enhancement of hardware capabili-

ties can significantly broaden the range of feasible models and their scalability &

performance. However few works have explored modified ASICs for in-network

ML, and further exploration in this area is needed.
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Power and Carbon Measurement. Current in-network ML measurements pri-

marily focus on metrics such as inference accuracy (e.g., accuracy and F1 score),

resource efficiency (e.g., memory usage and stage consumption), and system

performance (e.g., throughput and latency). However, there has been limited

measurement or modelling of power consumption and carbon emissions of

in-network ML models, despite known power efficiency of in-network com-

puting [201]. Power consumption is important to the cost-effectiveness of in-

network ML models and can significantly influence their commercial value. Ad-

ditionally, modelling carbon emissions (which are location dependent) can help

identify preferred deployment locations for in-network ML, minimising green-

house gas emissions and promoting environmental sustainability.

Multi-model and Multi-application. Current in-network ML research mainly

focuses on scenarios where a single model is deployed on a network device or

system for a specific task and user. While previous chapters (e.g. Chapter 6)

touched on some related topics, further research is needed to develop in-network

ML systems and mechanisms for multi-model and multi-application deploy-

ments. For example, combining multiple models based on their strength han-

dling specific features to form ensemble models beyond the ones presented in

this thesis. Additionally, supporting concurrent applications requires extending

current solutions to manage virtualised applications and their tenancy. These

enhancements would improve both the performance and cloud environment’s

applicability of in-network ML.

Security of In-network ML. Although in-network ML has been widely used in

cybersecurity applications, the security of in-network ML itself remains largely

unexplored. Examples of some areas worth exploring include enhancing models’

explainability, improving system resilience to security attacks, and developing
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robust methods for managing in-network ML failure modes. Further research of

these aspects can strengthen the security and reliability of in-network ML, and

increase users’ confidence in its practical deployment.

8.4 Concluding Remarks

Looking back on this work, the thesis offers solutions for offloading ML algo-

rithms to programmable network devices. The proposed three mapping method-

ologies enable a wide range of algorithm mappings. The designed Planter frame-

work simplifies the deployment workflow and easily fits changes and new se-

tups. The introduced hybrid and distributed deployment strategies scale the

model size and improve ML performance. The applications of in-network ML

showcase the benefit of proposed solutions to practical use cases. Moreover,

these solutions are becoming the enabler of in-network ML to a larger commu-

nity through open source. At the end of the thesis, I hope this research can

open the door for in-network ML, make in-network ML a practical computing

paradigm, and push in-network ML to be an option in parallel to current server-

based ML.
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