
Accelerating Machine Learning for Trading Using
Programmable Switches

Xinpeng Honga,*, Changgang Zhenga, Stefan Zohrena and Noa Zilbermana

aDepartment of Engineering Science, University of Oxford, Oxford, United Kingdom

Abstract. High-frequency trading (HFT) employs cutting-edge
hardware for rapid decision-making and order execution but often
relies on simpler algorithms that may miss deeper market trends.
Conversely, lower-frequency algorithmic trading uses machine learn-
ing (ML) for better market predictions but higher latency can negate
its strategic benefits. To achieve the best of both worlds, we present
an in-network ML solution that embeds ML processes into pro-
grammable network devices, accelerating feature engineering and
extraction as well as ML inference. In this paper, we design and
develop a solution that supports both stock mid-price and volatil-
ity movement forecasting using commodity switches. Our approach
achieves microsecond-scale, ultra-low latency, significantly lowering
it by 64% to 97% compared to previous works, while upholding the
same level of ML performance as server models. Additionally, by
combining network hardware and servers, a hybrid deployment strat-
egy can keep the misclassification rate change below 0.8% relative to
the server baseline while processing 49% of the traffic directly on the
switch and achieving a 45% average reduction in end-to-end latency.

1 Introduction
High-frequency trading (HFT), a form of algorithmic trading that
distinguishes itself by extremely high speeds and microsecond-scale
data processing, often leverages specialized hardware for accelera-
tion [22]. In contrast, trading strategies that operate at lower frequen-
cies typically rely on machine learning (ML) to improve decision-
making processes by analyzing market conditions more accurately
and thoroughly [19]. While combining the analytical and predictive
power of ML with the rapid execution capabilities of HFT proves to
be highly effective [24], merging ML-based strategic trading with
HFT often leads to increased latency and a slowdown in trading
speeds [11]. Recognizing the complementary strengths and weak-
nesses of HFT and ML-driven trading, this study focuses on bridging
the gap between these two paradigms.

Application workloads can be partially or fully offloaded from end
hosts to the network infrastructure, using programmable network de-
vices that are already deployed for traffic forwarding. This is referred
to as in-network computing [47]. Within this domain, in-network ML
focuses on deploying pre-trained ML models directly within net-
working hardware to perform inference. The primary objectives of
this strategy include achieving lower latency, higher throughput, and
improved power efficiency [39, 49]. Figure 1 illustrates the differ-
ence in data paths between general ML and in-network ML. Func-
tioning within a programmable switch, in-network ML can reduce

∗ Corresponding Author. Email: xinpeng.hong@eng.ox.ac.uk.

Input

General
Machine Learning

Output

Input

In-network
Machine Learning

Output

Skipped

Figure 1: Data path difference between general ML and in-network
ML.
latency by circumventing both end hosts and intermediate network
devices between end hosts and the in-network ML node. Therefore,
by design, in-network ML offers an effective solution for acceler-
ating ML-driven applications in scenarios where latency is crucial,
especially in trading activities.

Additionally, concerns have risen about the escalating burden on
CPU cycles and excessive electrical power use driven by the compe-
tition among HFT firms [42]. Beyond mere acceleration, the inherent
energy efficiency of network devices can provide ×1000 power sav-
ing [46, 47], offering the potential to replace numerous data center
servers and accelerators, thus enhancing AI sustainability.

Prior research on applying in-network ML for time-critical ap-
plications has been limited, with only a few works demonstrating
its potential for tackling trading challenges [52, 55, 20, 21]. How-
ever, these studies were confined to stock price movement prediction
and relied solely on raw features from market-by-order (MBO) or
limit order book (LOB) data. MBO data consists of basic informa-
tion about individual orders such as price and quantity [51], whereas
LOB data aggregates these orders, displaying total buy and sell quan-
tities at different price levels to reveal supply and demand dynam-
ics [50]. Engineering and extracting richer features yields deeper
market insights and enhanced ML outcomes, yet, to the best of our
knowledge, this strategy has not been implemented within network
devices before. To overcome the limitations of prior in-network ML
research, this work emphasizes advanced feature engineering and ex-
traction beyond raw data, alongside ML inference, at the network
edge. As Figure 2 shows, this positioning allows for immediate pre-
diction and decision-making, effectively bypassing the latency intro-
duced by traditional processing flow and server-based inference. Our
solution is evaluated on stock price movement prediction and, for
the first time, on forecasting short-term stock volatility, which is an-
other essential trading challenge. Tested on realistic datasets within
programmable switches using diverse in-network ML models, our
approach enhances the feasibility, practicality, and applicability of
in-network ML.

Programmable Network Switches

Standard Functionality
(e.g., Packet Forwarding)

Exchange

Servers or Accelerators

ML Training & Feature
Engineering & Inference

Traditional Data-center-based Solution

Programmable Network Switches (Data Plane)

Standard Functionality
(e.g., Packet Forwarding)

In-network
Solution

Pre-trained ML
Model Mapping

Shorter Data Path

Longer
Data
Path

…

Feature Engineering & ML Inference

Figure 2: Comparison of in-network solutions to traditional data-
center-based approaches in practical scenarios.

To summarize, the main contributions of this work are as follows:

• We introduce an innovative solution for accelerating ML-based
HFT using programmable switches, offering ultra-low-latency,
high-throughput, and energy-efficiency, while having a minimal
effect on ML performance.

• We design and implement a prototype that performs advanced fea-
ture engineering and inference directly within the programmable
network device. We integrate feature engineering and extraction
workflow with ML-related processes, deploying it on both soft-
ware and off-the-shelf hardware switches to demonstrate its prac-
ticality, based on high-frequency market feeds.

• We demonstrate, for the first time, the use of in-network ML for
stock market volatility movement forecasting.

• We evaluate the solution for both prediction and system-level net-
working performances within a networked-system testbed. Using
five in-network ML algorithms with different data sources to pre-
dict stock price and volatility movements, we show that our solu-
tion achieves better performance than state-of-the-art in-network
ML solutions.

• We examine a hybrid deployment strategy, evaluating its impact
on accuracy, error rate, the fraction of inferences managed by the
switch, and latency. Our findings indicate that a hybrid deploy-
ment enhances prediction performance while maintaining ultra-
low latency benefits.

2 Related Work

ML for Market Prediction. ML has shown its effectiveness in en-
hancing various facets of the trading process, such as market fore-
casting, trading signal generation, and optimization of order exe-
cution [22]. Among these, accurate predictions of short-term stock
price and volatility trends are crucial for trading entities and market
makers, as they lead to improved decision-making and fairer pric-
ing of financial derivatives for end investors. Yet, market prediction
is challenging due to the myriad of influencing factors [34]. Re-
searchers have utilized a range of ML strategies [12, 35, 13, 48], lead-
ing to models that, while more accurate, also grow in complexity and
data demand, presenting difficulties for traditional computing plat-
forms and slowing down processing speeds. Given that a competitive

edge in HFT hinges on achieving ultra-low latency, a key challenge
lies in accelerating ML-based market predictions while maintaining
their accuracy.

Hardware Acceleration for Trading. To date, various hardware
devices like application-specific integrated circuits (ASICs), graph-
ics processing units (GPUs), and field-programmable gate arrays
(FPGAs) have been employed to speed up trading processes [33].
While FPGAs have been utilized in prior studies to accelerate market
data processing and trading applications [31, 45], other approaches
have combined customized network interface cards (NICs) and soft-
ware optimizations for latency improvements [44]. The industry has
also made notable advances in hardware acceleration to support fi-
nancial services [38, 9]. However, hardware accelerators, while inte-
gral to server CPUs, elevate power consumption due to their energy
demands. Conversely, inherently programmable network devices, al-
ready existing within the network, avoid additional power costs, fa-
cilitating in-network ML without extra hardware. Yet, research on
accelerating ML-driven trading directly within the network itself is
still limited. Given the superior processing speed of ASICs over other
network devices [28], this study mainly adopts switching ASICs to
achieve the lowest end-to-end latency.

In-network ML. Network programmability has driven network
evolution, notably through software-defined networking (SDN),
which allows for software-based network management [41]. The de-
velopment of the Programming Protocol-independent Packet Pro-
cessors (P4) language enables customizable packet processing and
forwarding by network devices [16]. The data plane of network de-
vices, responsible for the actual forwarding of network packets, is
programmable through P4. Furthermore, the Protocol-Independent
Switching Architecture (PISA) is a programmable match-action
(M/A) pipeline architecture that enables granular control over packet
processing [30]. Certain P4 targets, like the behavioral model
(BMv2) switch [1] and P4 platform on Raspberry Pi (P4Pi) [26],
utilize standard CPUs for executing packet forwarding programs,
whereas others leverage hardware such as FPGAs [23], switches
(e.g., Intel Tofino [6]), and NICs (e.g., NVIDIA BlueField [3]).
P4 programs, by running on target devices, enable data plane pro-
grammability and facilitate the offloading of server applications to
network devices, thus capitalizing on their lower power overheads
and enhanced processing efficiency [47]. Previous research has fo-
cused on enhancing ML applications by offloading some parts of ML
functions into the data plane such as feature extraction and weight
aggregation [40, 27]. To date, various ML models have been adapted
for in-network ML, broadening its applicability across fields [55].
Nonetheless, the scope of in-network ML applications remains nar-
row, particularly in finance, with a few studies showcasing its utility
in financial market prediction [55, 20, 21]. These works focused on
a single use case with the utilization of basic MBO and LOB data
features, resulting in suboptimal ML model performance. This high-
lights the need for further feature engineering, which can offer more
detailed insights and enhance model efficacy.

3 System Design

The PISA architecture in a programmable switch consists of three
key building blocks: a parser, a deparser, and an M/A pipeline [30].
The parser functions as a state machine that extracts a sequence of
fields from a packet into what is known as a packet header vector
(PHV). This PHV then undergoes processing in the pipeline through
a series of logical stages using M/A tables. These tables are used
for looking up key values and mapping them to specific actions that

Data Plane

III. Mapped ModelII. Trained Model

Codes
00
01
1*

Leaf
1
0
2

Feature 1
0
…
β
…
n

"!
0
…
0
…
1

Branch 2

""
0
…
0
…
1

Feature 2
0
…
α
…
n

Branch 1

Feature Table 1 Feature Table 2 Tree Table

!1

0 1

> "

2
Branch 2

Branch 1
!2

≤ $> $

≤ 	"

Standard
P4 Program

Feature
Engineering (FE)

V. Load Model & Table

Control Plane

Mapping

I. Training Data & Configurations

IV. Generated
P4 Program

Standard P4 CodeFeature Engineering

ML Model Training ML-related P4 Code

FE-related P4 Code

Compiling

Parser DeparserMatch-Action PipelineTarget Switch

Mapped ML
Model Inference

Table Writing / Updating Model Loading

Figure 3: System design of in-network solutions.

dictate how the packet is processed. Finally, the deparser reassembles
the PHV with the packet payload before the packet is sent out.

Our solution, designed for networked environments, accelerates
ML-based market forecasts by conducting feature engineering and
ML inference directly within switches. More specifically, this ap-
proach involves the selection, manipulation, and transformation of
raw market data into richer features entirely within the data plane.
These features are then used for inference, with the capability for
some to be retained by leveraging registers for stateful analysis, along
with fields from upcoming packets. The system architecture design
of our solution is illustrated in Figure 3, including components and
processes on the control plane and the data plane. The control plane
governs how data is forwarded within a network, whereas the data
plane executes the actual forwarding of packets.

An in-network deployment begins with offline ML training on
servers, using historical market feeds along with both raw and en-
gineered data fields as features (as depicted in Figure 3 part I).
This trained model (part II) is then converted into a format com-
patible with the data plane using M/A table constructs (part III). A
P4 program is generated from the mapping, tailored to the specific
architecture of the target platform (part IV). This program is com-
prised of codes related to the architecture, including standard net-
work switching functions, feature engineering, which varies by tasks
and datasets, and inference models, created using current mapping
methodologies [55]. Upon compilation, the program is deployed onto
the target platform, with table entries loaded via the control plane
(part V). This design enables obtaining prediction results directly
within the data plane, based on pre-trained models.

Parts II & III of Figures 3 illustrate an example of how the infer-
ence process of a decision tree (DT) is mapped onto the data plane.
This involves deconstructing the model into a tree-like structure of
nodes and branches (part II), exemplifying a partitioning of the fea-
ture space using two features, f1 and f2. The inference process
tracks a data sample’s path through the tree, based on comparisons of
input feature values to threshold values, leading to specific branches.
To adapt this structure for the data plane, M/A table rules are estab-
lished, translating the path of feature splits into feature tables and a
singular tree table (part III). These tables use input features and splits
for matching conditions, with actions encoded to guide data through
the model’s structure, leading to decisions informed by match condi-

tions recorded as code pairs in the tree table.
Following offline model training and mapping, ultra-low-latency

feature engineering and ML inference can be realized in conjunction
with network forwarding. The nature of feature engineering varies
with each feed due to raw data differences, requiring customized ap-
proaches for creating new features. Detailed examples and further
discussions can be found in Section 4. However, the adaptability of
feature engineering is subject to the limitations of programmable data
planes within switches, which lack the capability for complex calcu-
lations, including trigonometric, logarithmic, and exponential func-
tions, as well as advanced operations like matrix multiplication or
calculus. Section 4 delves into how these constraints are navigated to
implement feature engineering effectively within limitations.

This design also enables a hybrid deployment to further improve
prediction performance, as suggested in [54]. Under this setup, pre-
dictions made within programmable switches are only labeled if they
reach a high classification confidence level. If not, the market feeds
are forwarded to a backend where a larger model performs the in-
ference. This approach helps to lower latency for the majority of in-
ferences, maintaining high prediction accuracy without sacrificing
networking performances.

4 Implementation

Our solution leverages the P4 language for implementation on
two different switches, BMv2 software switch [1] and Intel Tofino
switch-ASIC [6]. BMv2 is an open-source behavioral software
switch and serves as a flexible testing ground due to its minimal re-
source restrictions, making it ideal for evaluating functionalities and
P4 prototyping. Intel Tofino, our second target, is a high-performance
programmable switch-ASIC capable of multi-terabits per second
data rates and sub-microsecond latency [10], suitable for deployment
at the network edge. Similar to other programmable switch-ASICs,
Tofino has limited memory and processing stages [17]. While BMv2
is a suitable choice for P4 prototyping, utilizing Tofino showcases
the viability of employing off-the-shelf platforms in real-world trad-
ing scenarios. ML models are trained on servers using Python and
the scikit-learn (sklearn) library [36].

4.1 Key Challenges and Solutions

Given the limitations inherent to programmable hardware, feature
engineering must be adapted to fit the specific capabilities of the
switches. Below, we list several main challenges that may arise when
enabling in-network feature engineering processes, along with pro-
posed solutions used for implementing the in-network approach.

Handling Non-Supported Data Types. P4 is tailored for packet
processing and forwarding, focusing on the manipulation of network
packet headers’ fixed-size fields, typically integers. Consequently,
P4-compatible programmable data planes lack built-in support for
floating-point numbers, which are often used to represent values like
prices in market feeds. These numbers are converted to integers in
P4 data planes, using truncation or quantization.

Overcoming Limited Mathematical Operations Support. P4’s
support is confined to a basic set of operations, including addition,
subtraction, logical conjunction (AND), disjunction (OR), exclusive
disjunction (XOR), and bit shift. However, P4 does not support other
common operations crucial for feature engineering such as direct
variable comparisons. To circumvent these limitations, different ap-
proaches are used to perform the operations indirectly. For instance,

variable comparisons within if-else conditions are executed by calcu-
lating the difference between variables and comparing this difference
to zero. Complex calculations, like multiplication and division, are
facilitated through M/A table lookups. By using operands as keys for
table lookups, intricate feature engineering tasks are achievable, with
lookup tables aggregating multiple entries under common attributes
to enhance efficiency and scalability.

Enabling Stateful Analysis. Feature engineering sometimes ne-
cessitates aggregating data from multiple network transactions rather
than relying solely on data from an individual packet. For this pur-
pose, registers can be used to conduct stateful analysis. However, a
register can be accessed only once in the pipeline. This allows for a
single read-modify-write operation per register. As some feature en-
gineering processes with complex updates require reading from the
register at the beginning of the pipeline and then writing back to it
later in the same pipeline, a single access is insufficient. Packet recir-
culation, meaning that packets re-enter the pipeline for another pro-
cessing round, offers a solution for this challenge, with the first pass
used to read the register and the second for writing, or vice versa.
This mechanism also helps tackle resource limitations when fea-
ture engineering tasks become resource-intensive, especially when
dealing with unsupported constructs like loops or performing exten-
sive price and quantity analysis from LOBs. However, recirculation
comes at the cost of higher latency.

4.2 Data Plane Implementation

Our P4 solution incorporates feature engineering code with ML in-
ference code generated by Planter, a framework for model mapping
to programmable network devices [55]. Feature engineering is per-
formed based on raw LOB data, developing new features such as the
mid-price, bid-ask spread, and order flow imbalance. Each can re-
veal the direction and momentum of market sentiment from unique
perspectives, making them efficient features for market forecasting.

A bid order is an offer to buy a specific quantity of a financial
instrument at or below a specified price, while an ask order is to sell
at a certain price or higher, with both kinds of orders placed on the
respective sides of a LOB [50]. As the raw form of LOB data, the
LOB state at time t can be defined as the vector of price and volume
information for the top n bid and ask price levels:

snt :=
(
p1,at , q1,at , p1,bt , q1,bt , . . . , pn,a

t , qn,a
t , pn,b

t , qn,b
t

)⊤
∈ R4n

(1)
where pi,at and pi,bt are the ask and bid prices at the ith level at

time t while qi,at and qi,bt are the respective quantities.
The mid-price is the average of the highest bid price and the lowest

ask price [32], whereas the bid-ask spread is known as the difference
between the highest bid price and lowest ask price [43]. These two
features at time t can be computed as follows:

Pt :=
p1,at + p1,bt

2
(2)

St := p1,at − p1,bt (3)

The order flow imbalance quantifies the disparity between bid and
ask order volumes within a specific time frame. Given two consecu-
tive LOB states for the top n price levels at time t − 1 and t of the
form (1), the ask and bid order flows at time t can be defined as the
vectors At,Bt ∈ Rn [25], where each element is given by:

At,i :=

−qi,at−1, if pi,at > pi,at−1,

qi,at − qi,at−1, if pi,at = pi,at−1,

qi,at , if pi,at < pi,at−1,

(4)

Bt,i :=

qi,bt , if pi,bt > pi,bt−1,

qi,bt − qi,bt−1, if pi,bt = pi,bt−1,

−qi,bt−1, if pi,bt < pi,bt−1,

(5)

The order flow imbalance can be determined by subtracting Bt

and At as follows:

It := Bt −At ∈ Rn (6)

Formulas (4), (5), and (6), represent nonlinear transformations that
are widely used (on CPUs/GPUs) to convert the non-stationary time
series of LOB states into stationary ones [18, 25].

Compared to calculating the mid-price and bid-ask spread, obtain-
ing order flow imbalance on a programmable data plane is complex.
The pseudocode for deriving order flow imbalance on the data plane
is outlined in Algorithm 1. A register is used to record the price and
quantity details on both sides of the most recent order. These vari-
ables are stateful, requiring ongoing maintenance and updates. Other
variables in Algorithm 1 are user-defined metadata, used as inter-
mediates for indirect comparisons in feature engineering. The out-
put includes two features: one that captures the value of order flow
imbalance and another that indicates whether it is positive or nega-
tive. These features are assigned based on the outcomes of comparing
prices and quantities between sides and time.

Algorithm 1 Compute order flow imbalance at ith price level

1: - Rt−1[i]: A register array storing price and quantity information
on both sides at the ith price level at time t− 1.

2: - pi,at , pi,bt : Ask and bid prices at the ith level at time t.
3: - qi,at , qi,bt : Ask and bid quantities at the ith level at time t.
4: - c, d, e, f, g, h, j, k, l,m, n: Temporary variables for perform-

ing indirect comparisons.
5: - f1, f2: Order flow imbalance related features.
6:
7: function COMPUTATION(pi,at , qi,at , pi,bt , qi,bt)
8: pi,at−1, q

i,a
t−1, p

i,b
t−1, q

i,b
t−1 ← Rt−1[i] ▷ Read price and

quantity information on both sides at the Ith level at time t− 1.
9: Rt−1[I]← pi,at , qi,at , pi,bt , qi,bt ▷ Write back updated price

and quantity information on both sides at the Ith level at time t.
10: c, d, e, f, g, h, j, k, l,m, n← pi,at −p

i,a
t−1, p

i,b
t −p

i,b
t−1, q

i,b
t −

qi,at , qi,at−1−qi,bt−1, q
i,a
t +qi,bt−1, q

i,a
t−1+qi,bt , qi,bt −g, qi,at−1−g, h−

qi,at , h− qi,bt−1, h− g ▷ Compare prices and quantities.
11: if c < 0 and d < 0 then ▷ If pi,at < pi,at−1 and pi,bt < pi,bt−1.
12: f1, f2 ← qi,at + qi,bt−1, 0 ▷ Assign values to f1 and f2.
13: ▷ Four cases are omitted here for brevity.
14: else if c == 0 and d < 0 and k < 0 then ▷ Else if

pi,at == pi,at−1 and pi,bt < pi,bt−1 and qi,at−1 < qi,at + qi,bt−1.
15: f1, f2 ← g − qi,at−1, 0 ▷ Assign values to f1 and f2.
16: ▷ Nine cases are omitted here for brevity.
17: else if c > 0 and d > 0 then ▷ Else if pi,at > pi,at−1 and

pi,bt > pi,bt−1.
18: f1, f2 ← h, 1 ▷ Assign values to f1 and f2.
19: return f1, f2 ▷ Return order flow imbalance as features.

The features above are used solely for illustrative examples. Ad-
ditional feature engineering and the development of other features
based on market feeds can be further performed within data planes,
tailored to meet the requirements of data formats and task objectives.

5 Experiments

In this section, we conduct experiments on different financial market
data feeds and compare our in-network solution with server-based
benchmarks, examining their ML capabilities, latency, and through-
put. Additionally, performance comparisons are made among the five
most commonly used in-network ML algorithms. The results indi-
cate that the in-network solution is capable of accelerating ML while
maintaining forecasting accuracy across datasets and programmable
network targets.

Datasets and Tools: Evaluation is conducted on two financial
market feed datasets: NASDAQ’s Historical TotalView-ITCH sam-
ple data feeds [7] and LOBSTER dataset [8], focusing specifically
on the stock AAPL (Apple Inc). Owing to the lack of feeds spanning
consecutive days in the NASDAQ’s sample data source, evaluation is
based on information from a single day, specifically the most recent
data available on January 30, 2020, at the time of analysis. The LOB-
STER dataset contains raw LOB data over consecutive periods, with
the latest continuous four-day stretch, from December 27, 2022, to
December 30, 2022, being used. Our analysis emphasizes comparing
the relative performance of in-network models to server benchmarks
instead of assessing absolute performance, making a set of around
13.44 million total entries sufficient for our purposes without affect-
ing the findings. An open-source tool [14] is used for reconstructing
LOBs from MBO data feed messages, and a framework [55] is used
for in-network ML deployment.

Experiment Setup: An APS-Networks BF6064T-X Intel Tofino
switch equipped with 64×100G ports and SDE 9.4.0 software is used
in our experiments. Server-based evaluation, including network traf-
fic generation, utilizes two ASUS ESC4000A-E10 servers, both pow-
ered by AMD EPYC 7302P CPUs and equipped with 256GB of
DDR4 RAM, running on Ubuntu 20.04 LTS. They are connected to
the switch through NVIDIA ConnectX-5 100G NICs and direct at-
tach cables. For server-based ML training and inference, the sklearn
library [36] is applied.

5.1 Prediction Performance

The predictive accuracy is evaluated using five ML algorithms that
are commonly applied to market forecasting tasks, including k-
means (KM), k-nearest neighbors (KNN), decision trees (DTs), ran-
dom forests (RFs), extreme gradient boosting (XGB) [12, 35, 13, 48].
Model training uses up to the top ten price levels of LOBs in in-
put feeds for server-based predictions. For in-network predictions
on switches, only the best price level of LOBs is used for feature
engineering, due to resource constraints on the programmable hard-
ware. Server-based benchmarks are trained with unlimited-size mod-
els while in-network models are of limited size. The labels are used
to predict future stock mid-price or volatility movement (up, down,
and stationary) over the next 100 ticks. Mid-price is computed fol-
lowing Formula (2) while the rolling standard deviation of log re-
turns is calculated as a measure of volatility. A smoothing labeling
approach [32] is employed to extract more consistent signals from
highly stochastic feeds and oversampling techniques are applied to
address class imbalance.

Table 1 presents the prediction performance results leveraging
the most common ML evaluation metrics, including macro preci-
sion (PRE), macro recall (REC), macro F1-score (F1), and accuracy
(ACC). Despite some performance differences between in-network
solutions and server-based benchmarks across different models, it is
notable that in 85% of the instances, the performance loss for F1-

Table 1: Prediction performance (%) with different datasets and use
cases.

Models In-network Solutions On-server Benchmarks

PRE‡ REC‡ F1‡ ACC‡ PRE‡ REC‡ F1‡ ACC‡

Mid-price Movement Prediction with NASDAQ TotalView-ITCH

KM 38.51 40.10 35.20 40.60 42.29 41.11 35.48 39.95
KNN 30.95 30.90 30.85 31.20 42.08 39.91 40.10 39.86
DT 44.11 43.51 43.45 43.85 44.15 43.53 43.48 43.88
RF 44.59 42.93 41.60 42.45 48.14 44.49 44.13 44.64
XGB 43.43 43.32 43.32 43.31 44.64 44.60 44.60 44.58

Volatility Movement Prediction with NASDAQ TotalView-ITCH

KM 37.62 37.54 31.80 36.42 36.72 37.44 33.09 38.84
KNN 32.91 32.71 25.47 33.14 39.56 39.03 38.71 38.68
DT 43.68 42.81 42.67 42.90 43.39 43.29 42.91 43.91
RF 42.00 41.88 41.87 42.19 45.98 44.08 43.14 44.80
XGB 44.29 43.05 42.86 43.19 43.94 43.83 43.57 44.37

Mid-price Movement Prediction with LOBSTER

KM 22.92 33.45 22.54 33.46 25.59 37.75 29.43 37.67
KNN 32.17 33.04 29.67 33.09 34.75 34.74 34.53 34.73
DT 43.99 43.24 43.35 43.25 46.40 45.36 45.47 45.36
RF 42.93 42.99 42.56 42.97 45.93 45.90 45.90 45.89
XGB 44.62 44.11 44.23 44.11 46.62 46.21 46.32 46.21

Volatility Movement Prediction with LOBSTER

KM 23.35 33.45 24.37 38.54 23.74 33.71 26.22 34.16
KNN 13.17 33.33 18.88 39.51 34.08 33.88 32.33 32.60
DT 42.27 40.00 36.60 43.39 45.69 44.60 42.63 47.27
RF 39.70 38.56 38.15 40.13 45.78 44.63 42.90 47.67
XGB 40.17 39.16 37.87 41.86 45.46 45.62 43.89 47.85

‡ Bold and underline signify the highest and second-highest performance of
each metric, respectively, when comparing in-network models to those based
on servers. This corresponds to the least and second-least performance loss.

scores is less than 7% on a programmable switch. In certain cases,
in-network models demonstrate performance that is on par with their
server-based counterparts, exhibiting minimal discrepancy in results.
Where there is a greater gap, it is generally due to the losses in-
curred when mapping models to fit within switches, the constraints
on model size, and a restricted number of engineered features, all
because of limitations on hardware capacity.

KM KNN DT RF XGB Avg

PRE

REC

F1

ACCAv
g

Lo
ss

 (%
) 1.49 10.32 1.40 4.15 2.04 3.88

1.37 4.39 1.80 3.19 2.65 2.68

2.58 10.20 2.10 2.97 2.52 4.08

0.40 2.23 1.76 3.81 2.63 2.17 2.5

5.0

7.5

10.0

Figure 4: The average (avg) performance loss of different models and
metrics across datasets and use cases, in-network solutions relative
to server-based benchmarks.

The heatmap depicted in Figure 4 shows the average performance
loss of different models and metrics across datasets and use cases. It
reveals that, except for KNN, all in-network models demonstrate ro-
bust performance across these scenarios, maintaining an average per-
formance decrease within 5% for all evaluated metrics. Specifically,
the average losses in precision, recall, F1-score, and accuracy are
3.88%, 2.68%, 4.08%, and 2.17%, respectively. In-network KNN’s
performance is less optimal due to its sensitivity to model depth [53];
a shallow depth fails to effectively simulate the classification bound-
ary, whereas a deep model cannot fit within the data plane.

KM KNN DT RF XGB
0

25
50
75

100

Av
g

R
at

io
 (%

)

PRE
REC

F1
ACC

Figure 5: The average (avg) performance ratio of different models and
metrics across datasets and use cases, in-network solutions relative to
server-based benchmarks.

Upon closer analysis of the ML efficiency of our in-network ap-
proaches, the average performance ratios of different models and
metrics across datasets and use cases are computed, as shown in Fig-
ure 5. Specifically, in-network solutions attain, on average, 90.18%
precision, 93.62% recall, 89.14% F1-score, and 95.34% accuracy
relative to server benchmarks. These results, consistent with those
presented in Figure 4, demonstrate that our in-network approaches
closely match server-based models in terms of performance, with
minimal loss and consistent stability across different scenarios.

Additionally, to provide a performance comparison between exist-
ing in-network ML algorithms and deep learning models suitable for
sequence prediction tasks, a server-based recurrent neural network
(RNN) model using the long short-term memory (LSTM) architec-
ture is applied to the same datasets. This model, renowned for cap-
turing long-term dependencies, is constructed using TensorFlow and
Keras, comprising an LSTM layer of 50 units, followed by a dropout
layer to prevent overfitting and a dense output layer with softmax
activation for multi-class classification. The model is compiled with
the Adam optimizer and sparse categorical cross-entropy loss. While
direct implementation into switches remains impractical so far due
to the computational demands of LSTM or other types of RNN, the
majority of evaluated in-network models exhibit comparable efficacy
to it. The latter, for example, yields an F1-score of 43.06% and an ac-
curacy of 44.67% when predicting stock mid-price movement using
NASDAQ TotalView-ITCH data feeds, while using LOBSTER feeds
results in an F1-score of 45.91% and an accuracy of 46.25%.

5.2 Networking Performance

To assess system-level networking performance, an evaluation is per-
formed directly on the data plane of Intel Tofino [6], focusing on two
key indicators: latency and throughput. Latency measures the time it
takes for a data packet to travel from its origin to the endpoint via a
hardware network device, while throughput refers to the amount of
data that can be transmitted over the device within a given period.

Due to Tofino-related non-disclosure agreements, the relative
pipeline latency (R-Latency) of our in-network solution is compared
with that of the Intel reference switch program, namely switch.p4,
both determined by Tofino’s compiler. The switch.p4 program de-
tails how a network switch operates, covering basic functions from
simple network switching to more complex routing tasks [5]. Fig-
ure 6 (a) illustrates that all evaluated in-network models achieve a
latency that is lower than 75% of that observed with the reference
switch.p4, demonstrating that even under resource constraints, the in-
network solution still achieves comparable latency to simple packet
switching. Furthermore, it is verified that this solution can be de-
ployed alongside other networking functions.

Additionally, to measure the framework latency of our solution,
experiments are conducted using two servers connected through a
programmable switch. The framework R-Latency is calculated by
comparing the latency observed with the deployment of our solu-
tion to that of simple packet forwarding via the switch. These mea-

KM KNN
DT RF XGB

Ref

0.25
0.50
0.75
1.00

R
-L

at
en

cy In-network ML
Switch.P4

(a) Pipeline R-Latency

Soln
BM1

BM2
BM3

BM4
100

101

102

R
-L

at
en

cy In-network Solution
Benchmarks

(b) Framework R-Latency

Figure 6: (a) The relative latency (R-Latency) of programmable
switches’ pipeline for different in-network models, measured for
standalone ML and standalone switch.p4. (b) The R-Latency of
our solution (Soln) and four benchmarks (BM1 [44], BM2 [37],
BM3 [37], BM4 [15]), relative to simple packet forwarding through
a switch.

surements utilize the Precision Time Protocol (PTP) alongside the
ptp4l toolkit. The results, illustrated in Figure 6 (b), show that our
solution achieves microsecond-level average latency across models,
yielding an improvement of 64% to 97% compared to state-of-the-
art benchmarks, which include NIC-based, FPGA-based, and server-
based data processing. Specifically, our solution has a lower latency
than the end-to-end latency observed in a NIC-based trading sys-
tem [44], the turnaround latency in FPGA-based and CPU-based
NASDAQ data feed handlers [37], and the minimum latency attained
by the fastest NASDAQ traders [15]. Considering that even a slight
rise in latency for trading applications can result in the loss of mil-
lions of dollars from missed arbitrage opportunities [29], this finding
suggests that in-network ML holds significant potential for HFT.

In a throughput evaluation, a snake configuration is employed in
the setup, allowing traffic to flow in a continuous loop from one port
to the next, thus facilitating connectivity through all 64 ports. This
is achieved using Pktgen version 21.03.0 [4] powered by DPDK ver-
sion 20.11.1 [2] for packet generation. The findings demonstrate that
our in-network solution is capable of reaching the line rate on a com-
mercial Tofino switch, achieving a throughput of 6.4Tbps (Terabits
per second) across all tested cases.

The profitability of our in-network solutions compared with
server-based benchmarks also considers both gains and losses. A
simulation indicates that while our solution may incur a 2.17% an-
nual profitability loss due to ML performance degradation, it can
generate an additional 4.08% profit from latency reduction. Overall,
this results in an average additional profit of 1.91% per year, with a
profit/loss ratio of 1.88. In the $7-$8 billion HFT market, this trans-
lates to over $100 million additional profits.

5.3 Hybrid Deployment Performance

The predictive performance of our in-network solution can be fur-
ther enhanced through a hybrid deployment approach [54]. The base-
line is a full-sized ensemble model running on servers. Meanwhile,
a smaller model is deployed on the switch for inference. Messages
classified with low confidence by the switch are then sent to the
servers for more in-depth classification. A hybrid index is defined
as a particular confidence threshold set on the switch, determining
which classifications are processed on the switch and which are es-
calated to the servers.

Figure 7 depicts the correlation between the hybrid index and four
critical performance indicators: accuracy, misclassification rate, the
proportion of offloaded traffic, and relative framework latency rela-
tive to simple forwarding through the switch. This is demonstrated
using random forest models for classification, handling two predic-
tive tasks on LOBSTER data feeds.

0.3 0.35 0.4 0.45 0.5
Hybrid Index

40
45
50
55
60

A
cc

ur
ac

y
(%

) Server
Switch

0.3 0.35 0.4 0.45 0.5
Hybrid Index

52
54
56
58
60

 E

rr
or

 R
at

e
(%

)

Baseline (53.83%)

f1=0.4252 f1=0.4461

f1=0.4462

f1=0.4575

0.3 0.35 0.4 0.45 0.5
Hybrid Index

0
25
50
75

100

Sw
itc

h
Fr

ac
. (

%
)

0.3 0.35 0.4 0.45 0.5
Hybrid Index

0
10
20
30
40

R
-L

at
en

cy
Average
Median

(a) Mid-price Movement Prediction

0.3 0.35 0.4 0.45 0.5
Hybrid Index

40
45
50
55
60

A
cc

ur
ac

y
(%

) Server
Switch

0.3 0.35 0.4 0.45 0.5
Hybrid Index

52
54
56
58
60

 E

rr
or

 R
at

e
(%

)

Baseline (53.84%)

f1=0.3531f1=0.3685
f1=0.3917

f1=0.4139

0.3 0.35 0.4 0.45 0.5
Hybrid Index

0
25
50
75

100

Sw
itc

h
Fr

ac
. (

%
)

0.3 0.35 0.4 0.45 0.5
Hybrid Index

0
10
20
30
40

R
-L

at
en

cy

Average
Median

(b) Volatility Movement Prediction
Figure 7: The accuracy, error rate, and fraction (Frac.) of traffic of-
floaded by the switch, and end-to-end average and median relative
latency (R-latency) of the in-network solution with LOBSTER using
random forest models, across hybrid indices.

Several common findings can be identified from Figure 7: Firstly,
as the hybrid index is increased, there is a noticeable improvement in
prediction accuracy both on the switch and the server. With a higher
index, the misclassification rate decreases and the F1-score improves.
However, the classification accuracy on the switch is lower than that
on the server because the switch’s model, which contains only 4 trees
with a maximum depth of 3 and a maximum of 1000 leaf nodes,
is substantially smaller than the server’s model. The server’s model
comprises 200 trees with a maximum depth of 30 and up to 10000
leaf nodes. Secondly, setting a higher hybrid index means more or-
der feeds are directed to the server for processing, reducing the frac-
tion of traffic that the switch can offload. Thirdly, this redirection of
more orders to the server also results in higher average latency per
processed order. The significant increase in median latency noted in
related figures highlights the point where half of the orders are routed
to the server, with the other half managed solely on the switch.

As Figure 7 (a) demonstrates, for mid-price movement prediction,
the optimal hybrid index is 0.42, as this setting allows 49.98% of the
traffic to be managed directly on the switch, with the error rate in-
crease capped at 0.3% compared to the server-based baseline. In such
scenarios, the average latency per message is reduced by 39.91% rel-
ative to a server-only setup. According to Figure 7 (b), for predicting
volatility movements, the ideal hybrid index of 0.41 is recommended.

Adjusting to this level keeps the error rate increase below 1.3%, al-
lows 48.05% of the traffic to be processed on-switch, and achieves a
latency reduction of 49.17% on average. In practice, an appropriate
hybrid index can be selected case by case to balance all metrics.

Overall, our evaluation indicates that a hybrid approach processes
approximately 49% of traffic directly on the switch, avoiding the
need for server intervention. This strategy not only keeps the aver-
age change in the misclassification rate under 0.8% but also achieves
an average latency reduction of 45%, proving its effectiveness in han-
dling large-scale trading feeds.

6 Discussion
In-network ML Algorithms: This work focuses on five commonly-
used in-network ML models. It excludes others, like in-network sup-
port vector machines and naive Bayes, due to higher hardware re-
source consumption demands, which would hinder the simultane-
ous deployment of feature engineering code (although direct infer-
ence with these models is feasible). Despite the growing popular-
ity of deep learning and reinforcement learning in trading, they are
not yet sufficiently developed for in-network applications [53]. How-
ever, the prospect of integrating a wider range of algorithms into data
planes is promising in future research, which could further enhance
in-network ML’s capabilities and applicability in more use cases.

Low-latency Network Devices: By design, this work focuses on
accelerating ML for short-term financial market predictions using
raw LOB data directly within the network. Our solution stands out
by eliminating the latency involved in reaching the end host, with
negligible overhead added compared to standard network forward-
ing processes. The adoption of low-latency programmable switches
could further reduce latency. The promising capacity of in-network
ML to lower latency opens avenues for developing new trading sys-
tem architectures that incorporate programmable network devices.

7 Conclusion
This study presented a novel approach to accelerate ML for trading
using programmable network switches. Based on raw LOB feeds, an
in-network solution was designed to perform feature engineering and
inference directly within the programmable data plane. The findings
demonstrate that our solution significantly reduces end-to-end la-
tency to microsecond scales by 64% to 97% and achieves a through-
put of 6.4Tbps while minimizing average loss in all ML metrics to
between 2% and 4%, compared to baselines. Moreover, employing a
hybrid deployment strategy enhances its predictive capabilities. Our
experiment shows that a hybrid setup enables on-switch processing
of 49% of the traffic and an average reduction of 45% in latency
while limiting the increase in misclassification rate to below 0.8%. In
summary, this methodology streamlines integrating new data feeds
and algorithms, possessing the potential for straightforward exten-
sion and application across various ML-based, time-sensitive finan-
cial use cases in the future.

Acknowledgements
This work was partly funded by VMware. We acknowledge support
from Intel and NVIDIA.

References

[1] Reference P4 software switch. https://github.com/p4lang/behavioral-m
odel.

[2] DPDK. https://www.dpdk.org/.
[3] NVIDIA BlueField networking platform. https://www.nvidia.com/en-g

b/networking/products/data-processing-unit/.
[4] Pktgen. https://pktgen-dpdk.readthedocs.io/en/latest/contents.html.
[5] switch.p4. https://github.com/p4lang/switch/tree/master/p4src.
[6] Barefoot Tofino. https://www.barefootnetworks.com/products/brief-t

ofino/.
[7] NASDAQ ITCH data source. 2020. URL https://emi.nasdaq.com/ITC

H/Nasdaq%20ITCH/.
[8] LOBSTER data source. 2022. URL https://lobsterdata.com/.
[9] AMD. AMD announces new Alveo X3 series for electronic trading.

HPC Wire, 2022. URL https://www.hpcwire.com/off-the-wire/amd-a
nnounces-new-alveo-x3-series-for-electronic-trading/.

[10] APS Networks. BF6064X-T advanced programmable switch.
https://www.aps-networks.com/wp-content/uploads/2021/07/210712_
APS_BF6064X-T_V04.pdf[Online, accessed Feb-2023].

[11] J. Arifovic et al. Machine learning and speed in high-frequency trading.
Journal of Economic Dynamics and Control, 139:104438, 2022.

[12] M. Ballings, D. Van den Poel, N. Hespeels, and R. Gryp. Evaluating
multiple classifiers for stock price direction prediction. Expert systems
with Applications, 42(20):7046–7056, 2015.

[13] S. Basak, S. Kar, S. Saha, L. Khaidem, and S. R. Dey. Predicting the
direction of stock market prices using tree-based classifiers. North Am.
J. Econ. Finance, 47:552–567, 2019.

[14] M. Bernasconi-De-Luca et al. martinobdl/ITCH: ITCH50Converter,
2021. URL https://zenodo.org/record/5209267.

[15] J. Bonart and M. D. Gould. Latency and liquidity provision in a limit
order book. Quant. Finance, 17(10):1601–1616, 2017.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Pro-
gramming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[17] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang. Fine-grained queue measurement in the data
plane. In Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies, pages 15–29, 2019.

[18] R. Cont, A. Kukanov, and S. Stoikov. The price impact of order book
events. Journal of financial econometrics, 12(1):47–88, 2014.

[19] E. A. Gerlein, M. McGinnity, A. Belatreche, and S. Coleman. Evalu-
ating machine learning classification for financial trading: An empirical
approach. Expert Systems with Applications, 54:193–207, 2016.

[20] X. Hong, C. Zheng, S. Zohren, and N. Zilberman. Linnet: limit order
books within switches. In Proceedings of the SIGCOMM’22 Poster and
Demo Sessions, pages 37–39. 2022.

[21] X. Hong, C. Zheng, S. Zohren, and N. Zilberman. LOBIN: In-
network machine learning for limit order books. In 2023 IEEE 24th
International Conference on High Performance Switching and Routing
(HPSR), pages 159–166. IEEE, 2023.

[22] B. Huang, Y. Huan, L. D. Xu, L. Zheng, et al. Automated trading sys-
tems statistical and machine learning methods and hardware implemen-
tation: a survey. Enterprise Information Systems, 13(1):132–144, 2019.

[23] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman. The
P4→NetFPGA Workflow for Line-Rate Packet Processing. In Proceed-
ings of the ACM FPGA 2019, pages 1–9, 2019.

[24] M. Kearns and Y. Nevmyvaka. Machine learning for market microstruc-
ture and high frequency trading. High Frequency Trading: New Reali-
ties for Traders, Markets, and Regulators, 2013.

[25] P. N. Kolm, J. Turiel, and N. Westray. Deep order flow imbalance:
Extracting alpha at multiple horizons from the limit order book. Math-
ematical Finance, 33(4):1044–1081, 2023.

[26] S. Laki, R. Stoyanov, D. Kis, R. Soulé, P. Vörös, and N. Zilberman.
P4Pi: P4 on Raspberry Pi for networking education. ACM SIGCOMM
Computer Communication Review, 51(3):17–21, 2021.

[27] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift.
ATP: In-network aggregation for multi-tenant learning. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), pages 741–761, 2021.

[28] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and K. Vis-
sers. A low-latency library in FPGA hardware for high-frequency trad-
ing (HFT). In 2012 IEEE 20th annual symposium on high-performance
interconnects, pages 9–16. IEEE, 2012.

[29] R. Martin. Wall street’s quest to process data at the speed of light.
Information Week, 4(21):07, 2007.

[30] N. McKeown. PISA: Protocol Independent Switch Architecture, 2015.
P4 Workshop.

[31] G. W. Morris, D. B. Thomas, and W. Luk. FPGA accelerated low-
latency market data feed processing. In 2009 17th IEEE Symposium on
High Performance Interconnects, pages 83–89. IEEE, 2009.

[32] A. Ntakaris, M. Magris, J. Kanniainen, M. Gabbouj, et al. Benchmark
dataset for mid-price forecasting of limit order book data with machine
learning methods. Journal of Forecasting, 37(8):852–866, 2018.

[33] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, et al. Accelerating recur-
rent neural networks in analytics servers: Comparison of FPGA, CPU,
GPU, and ASIC. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–4. IEEE, 2016.

[34] M. Obthong, N. Tantisantiwong, et al. A survey on machine learning
for stock price prediction: Algorithms and techniques. 2020.

[35] J. Patel, S. Shah, et al. Predicting stock and stock price index move-
ment using trend deterministic data preparation and machine learning
techniques. Expert systems with applications, 42(1):259–268, 2015.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.
Scikit-learn: Machine learning in Python. the Journal of machine
Learning research, 12:2825–2830, 2011.

[37] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and V. Natoli. Low-
latency FPGA based financial data feed handler. In 2011 IEEE 19th An-
nual International Symposium on Field-Programmable Custom Com-
puting Machines, pages 93–96. IEEE, 2011.

[38] V. Santosh and S. Singh. Announcing DPU-based acceleration for NSX.
VMWare, 2022. URL https://blogs.vmware.com/networkvirtualization
/2022/08/announcing-dpu-based-acceleration-for-nsx.html/.

[39] D. Sanvito, G. Siracusano, and R. Bifulco. Can the network be the AI
accelerator? In NetCompute, pages 20–25, 2018.

[40] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, et al. Scaling distributed machine learning with
in-network aggregation. arXiv preprint arXiv:1903.06701, 2019.

[41] S. Scott-Hayward et al. SDN security: A survey. In 2013 IEEE SDN
For Future Networks and Services (SDN4FNS), pages 1–7. IEEE, 2013.

[42] J. Stokes. One Day, the Stock Market Could Eat the Power Grid. Wired,
2011. URL https://www.wired.com/insights/2011/12/stock-market-p
ower/.

[43] H. R. Stoll. Inferring the components of the bid-ask spread: Theory and
empirical tests. the Journal of Finance, 44(1):115–134, 1989.

[44] H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto. Streaming, low-
latency communication in on-line trading systems. In 2010 IEEE Inter-
national Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), pages 1–8. IEEE, 2010.

[45] Q. Tang, M. Su, L. Jiang, J. Yang, et al. A scalable architecture for low-
latency market-data processing on FPGA. In 2016 IEEE Symposium on
Computers and Communication (ISCC), pages 597–603. IEEE, 2016.

[46] Y. Tokusashi, H. Matsutani, and N. Zilberman. LaKe: the power of
in-network computing. In 2018 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages 1–8. IEEE, 2018.

[47] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman. The
case for in-network computing on demand. In Proceedings of the Four-
teenth EuroSys Conference 2019, 2019.

[48] S. D. Vrontos, J. Galakis, and I. D. Vrontos. Implied volatility direc-
tional forecasting: a machine learning approach. Quantitative Finance,
21(10):1687–1706, 2021.

[49] Z. Xiong and N. Zilberman. Do switches dream of machine learning?
toward in-network classification. In HotNets, pages 25–33, 2019.

[50] Z. Zhang, S. Zohren, and S. Roberts. DeepLOB: Deep convolutional
neural networks for limit order books. IEEE Transactions on Signal
Processing, 67(11):3001–3012, 2019.

[51] Z. Zhang, B. Lim, and S. Zohren. Deep learning for market by order
data. Applied Mathematical Finance, 28(1):79–95, 2021.

[52] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-
Itzhak, and N. Zilberman. Automating in-network machine learning.
arXiv preprint arXiv:2205.08824, 2022.

[53] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, and N. Zil-
berman. In-Network Machine Learning Using Programmable Network
Devices: A Survey. IEEE Communications Surveys & Tutorials, 2023.

[54] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-
abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman. IIsy: Hybrid
In-Network Classification Using Programmable Switches. IEEE/ACM
Transactions on Networking, 2024.

[55] C. Zheng, M. Zang, X. Hong, L. Perreault, R. Bensoussane, S. Var-
gaftik, Y. Ben-Itzhak, and N. Zilberman. Planter: Rapid Prototyping of
In-Network Machine Learning Inference. ACM SIGCOMM Computer
Communication Review, 2024.

