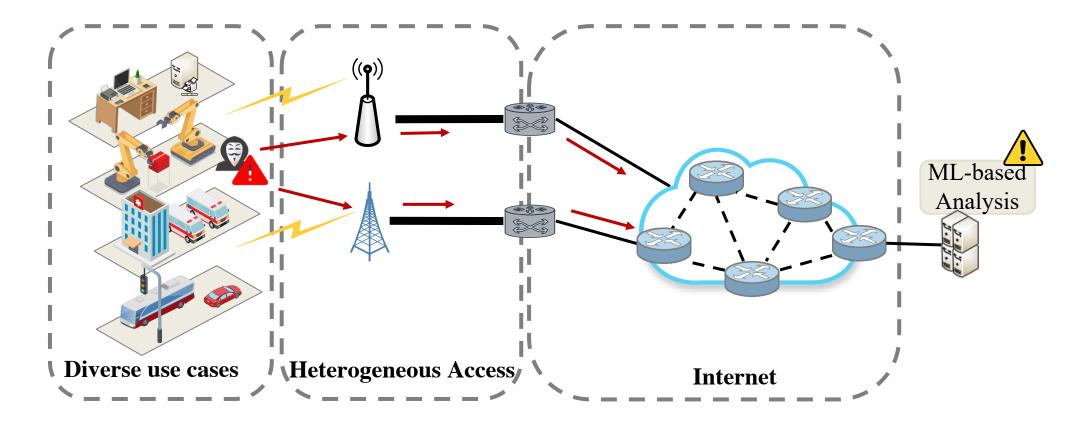


Advanced Threat Defense with In-Network Traffic Analysis for IoT Gateways

Mingyuan Zang*, Changgang Zheng†, Noa Zilberman†, and Lars Dittmann*

*Technical University of Denmark, †University of Oxford

Internet of Things (IoT) Network

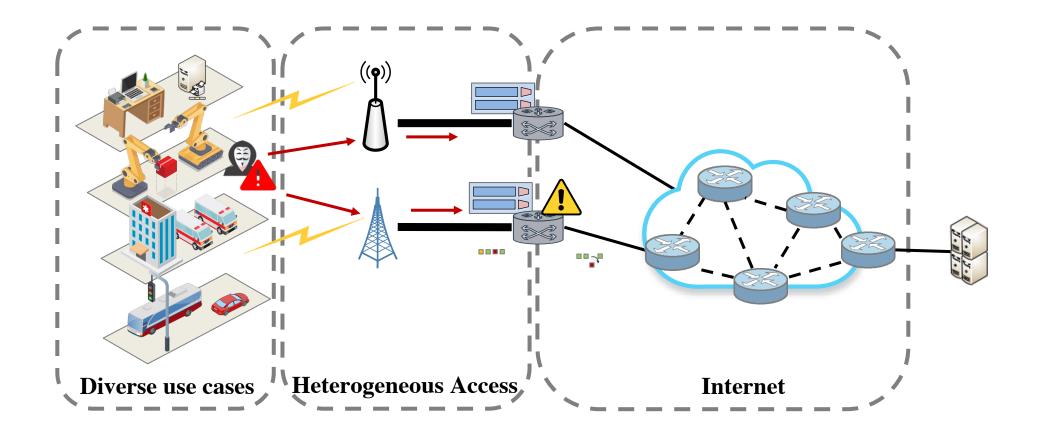


5G/6G's extremely low latency requirements + emerging attack variants in IoT

→ Fast spreading threats with changing patterns

How to continuously learn and swiftly mitigate emerging threat patterns in IoT network?

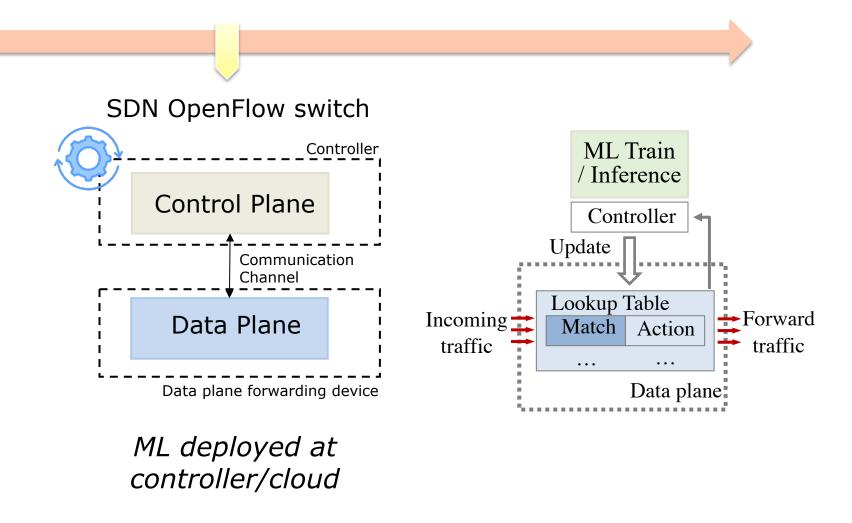
Internet of Things (IoT) Network



Programmable data planes enable in-network ML-based mitigation

What is in-network ML (inference)?

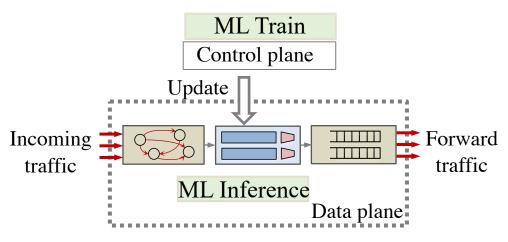
DTU From Software-Defined Networking (SDN) **☵** To Programmable Data Plane



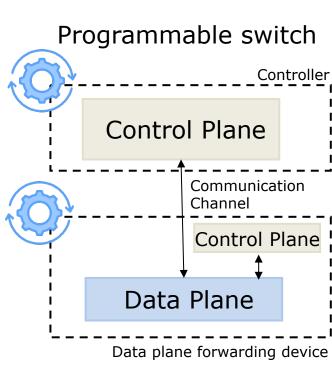
DTU From Software-Defined Networking (SDN) To Programmable Data Plane

"This is how I know to process packets ..."

"This is how I want to process packets"



- ✓ Flexible packet parsing
- ✓ Immediate action to anomaly
- ✓ Runtime reconfigurable

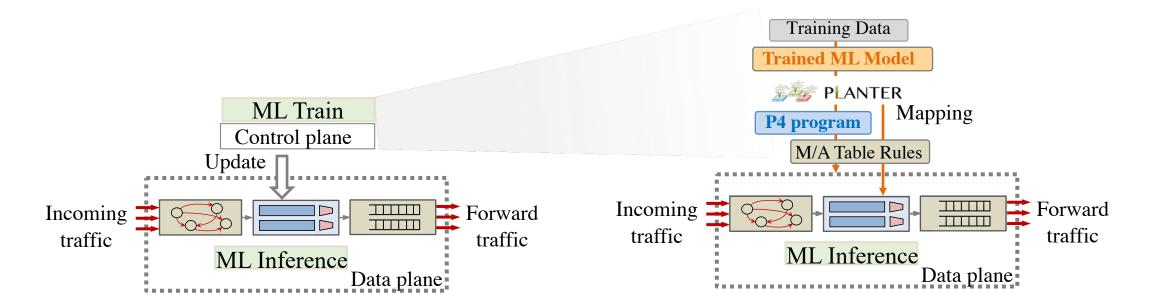


Offload ML inference to the data plane

Efficient In-Network ML Inference

In-network ML inference in Planter [1]

- A trained model → a series of inference operations on programmable pipeline (Match-Action table rules)
- Support common-used model: Bayes, SVM, DT, NN, ...

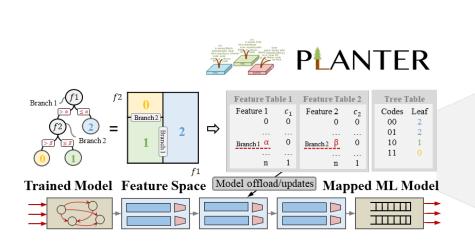


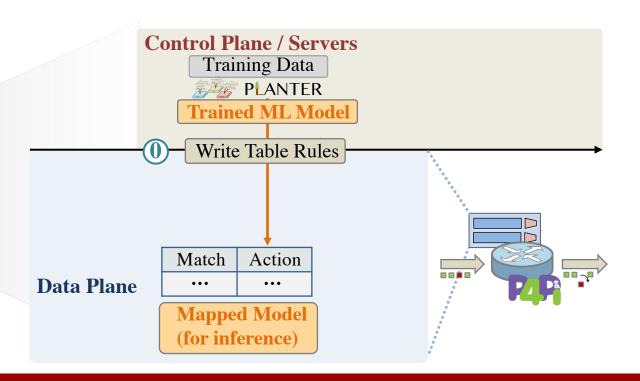
[1] C. Zheng et al., "Automating In-Network Machine Learning," arXiv preprint arXiv:2205.08824, 2022

How to apply in-network ML inference to IoT gateway without affecting data plane service?

Step 0: In-network ML inference in IoT gateway

Tree model (Decision Tree/Random Forest) inferred in gateway data plane
 Initialize the mapped model within the processing pipeline (Match-Action table rules)



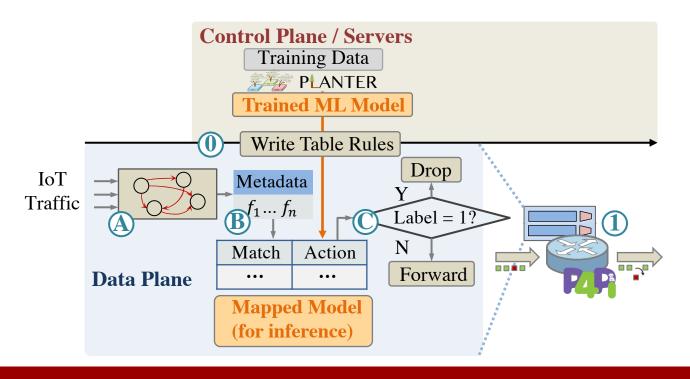


Proposed Design – P4Pir

Step 1: In-band feature extraction and fast mitigation

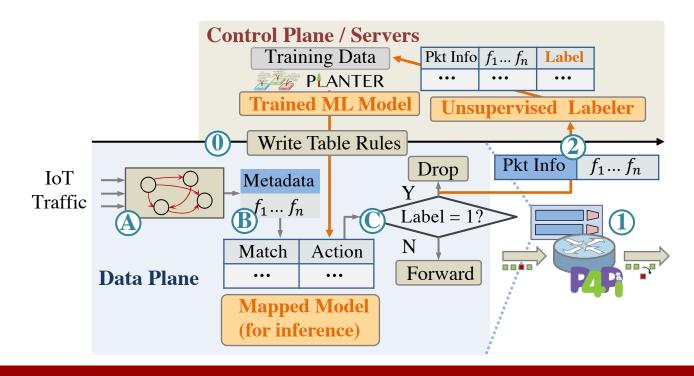
- Customized packet parsing and feature extraction
 Extracted features » in-network ML inference
- Threat mitigation based on inference results in data plane

Benign (label = 0) \rightarrow forward Malicious (label = 1) \rightarrow drop



Step 2: Proactive logging and unsupervised labeling for IoT traffic

- Proactive logging of extracted features in digests
- Unsupervised-based *iForest* algorithm to automate log labeling

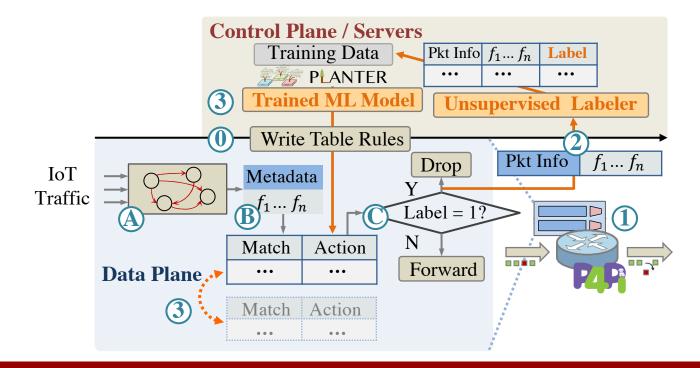


12

Step 3: Continuous update for in-network model

Shadow table modifications for hitless updates of in-network model

Runtime update the retrained model without disrupting data plane functions



Prototype

P4Pi: Raspberry Pi 4 Model B + BMv2 programmable switch

Performance

>30% accuracy 个, real-time mitigation, negligible jitter, 8% 个 on CPU utilization

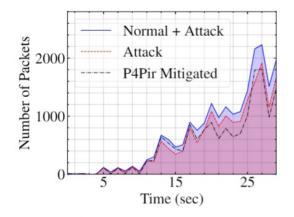
TABLE III
DETECTION ACCURACY ON DATASET CICIDS 2017.

		SCAN	SCAN→DOS		SCAN→BOT*		
		Init	Base	P4Pir	Base	P4Pir	
DT	ACC	0.987	0.604	0.932	0.900	0.923	
	F1	0.984	0.568	0.868	0.776	0.820	
RF	ACC	0.989	0.731	0.942	0.987	0.989	
	F1	0.985	0.027	0.869	0.964	0.987	

TABLE IV DETECTION ACCURACY ON DATASET EDGE-IIOTSET.

		SYN	SYN→SCAN		SYN→UDP		SYN→HTTP [†]	
		Init	Base	P4Pir	Base	P4Pir	Base	P4Pir
DT	ACC	0.910	0.156	0.945	0.435	0.903	0.921	0.941
	F1	0.953	0.270	0.972	0.606	0.949	0.924	0.970
RF	ACC	0.999	0.674	0.999	0.888	0.903	0.791	0.902
	F1	0.999	0.788	0.999	0.934	0.944	0.876	0.943

^{*} Init - Initial state, Base - Baseline, SCAN - port scanning attack, DoS



(a) Mitigation performance.

⁻ DDoS LOIT attack, BOT - Botnet ARES attack.

[†] Init - Initial state, Base - Baseline, SYN - DDoS TCP SYN attack, SCAN - vulnerability scanning attack, HTTP - HTTP flooding attack, UDP - UDP flooding attack.

We present P4Pir, an in-network ML-based analysis solution to defend against emerging threats on IoT gateway:

- Accurate ML-based traffic analysis inferred within the IoT gateway
- Swift mitigation of malicious traffic within forwarding data plane
- Continuous learning of emerging traffic patterns with runtime model updates

Further work:

- Distributed deployment of P4Pir e.g. Federated learning... FLIP4 [1]

Questions?

Changgang Questions?

[1] M. Zang et al., "Federated Learning-Based In-Network Traffic Analysis on IoT Edge," IFIP Networking 2023 - Sec4IoT, 2023